IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p629-641.html
   My bibliography  Save this article

The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory

Author

Listed:
  • A. Nekrasova
  • V. Kossobokov
  • A. Peresan
  • A. Magrin

Abstract

Rigorous and objective testing of seismic hazard assessments against the real seismic activity must become the necessary precondition for any responsible seismic risk estimation. Because seismic hazard maps seek to predict the shaking that would actually occur, the reference hazard maps for the Italian seismic code, obtained by probabilistic seismic hazard assessment (PSHA), and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA), are cross-compared and tested against the real seismicity for the territory of Italy. The comparison between predicted intensities and those reported for past earthquakes shows that models generally provide rather conservative estimates, except for PGA with 10 % probability of being exceeded in 50 years, which underestimates the largest earthquakes. In terms of efficiency in predicting ground shaking, measured accounting for the rate of underestimated events and for the territorial extent of areas characterized by high seismic hazard, the NDSHA maps appear to outscore the PSHA ones. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • A. Nekrasova & V. Kossobokov & A. Peresan & A. Magrin, 2014. "The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 629-641, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:629-641
    DOI: 10.1007/s11069-013-0832-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0832-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0832-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max Wyss & Anastasia Nekrasova & Vladimir Kossobokov, 2012. "Errors in expected human losses due to incorrect seismic hazard estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 927-935, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Pavlenko, 2015. "Effect of alternative distributions of ground motion variability on results of probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1917-1930, September.
    2. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    3. Max Wyss & Philippe Rosset, 2013. "Mapping seismic risk: the current crisis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 49-52, August.
    4. Anastasiya Nekrasova & Vladimir Kossobokov, 2023. "Seismic risk assessment for the infrastructure in the regions adjacent to the Russian Federation Baikal–Amur Mainline based on the Unified Scaling Law for Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1995-2010, March.
    5. Vladimir G. Kossobokov & Anastasia K. Nekrasova, 2018. "Earthquake hazard and risk assessment based on unified scaling law for earthquakes: Altai–Sayan Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1435-1449, September.
    6. Imtiyaz A. Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2018. "Seismic hazard and risk assessment based on Unified Scaling Law for Earthquakes: thirteen principal urban agglomerations of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1509-1522, July.
    7. Vladimir Kossobokov, 2013. "Earthquake prediction: 20 years of global experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(2), pages 1155-1177, November.
    8. V. A. Pavlenko & A. Kijko, 2019. "Comparative study of three probabilistic methods for seismic hazard analysis: case studies of Sochi and Kamchatka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 775-791, June.
    9. G. Babayev & L. Telesca, 2014. "Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1647-1661, September.
    10. Imtiyaz Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2014. "Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 549-562, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:629-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.