IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i2p1155-1177.html
   My bibliography  Save this article

Earthquake prediction: 20 years of global experiment

Author

Listed:
  • Vladimir Kossobokov

Abstract

Earthquake professionals have for many decades recognized the benefits to society from reliable earthquake predictions, but uncertainties regarding source initiation, rupture phenomena, and accuracy of both the timing and magnitude of the earthquake occurrence have oftentimes seemed either very difficult or impossible to overcome. The problem is that most of these methods cannot be adequately tested and evaluated either because of (a) lack of a precise definition of “prediction” and/or (b) shortage of data for meaningful statistical verification. This is not the case for the pattern recognition algorithm M8 designed in 1984 for prediction of great, Magnitude 8, earthquakes, hence its name. By 1986, the algorithm was rescaled for applications aimed at smaller magnitude earthquakes, down to M5+ range, and since then it has become a useful tool for systematic monitoring of seismic activity in a number of test seismic regions worldwide. After confirmed predictions of both the 1988 Spitak (Armenia) and the 1989 Loma Prieta (California) earthquakes, a “rigid test” to evaluate the efficiency of the intermediate-term middle-range earthquake prediction technique has been designed. Since 1991, each half-year, the algorithm M8 alone and in combination with its refinement MSc has been applied in a real-time prediction mode to seismicity of the entire Earth, and this test outlines, where possible, the areas in the two approximations where magnitude 8.0+ and 7.5+ earthquakes are most likely to occur before the next update. The results of this truly global 20-year-old experiment are indirect confirmations of the existing common features of both the predictability and the diverse behavior of the Earth’s naturally fractal lithosphere. The statistics achieved to date prove (with confidence above 99 %) rather high efficiency of the M8 and M8-MSc predictions limited to intermediate-term middle- and narrow-range accuracy. These statistics support the following general conclusions—(1) precursory seismic patterns do exist; (2) the size of an area where precursory seismic patterns show up is much larger than that of the source zone of the incipient target earthquake; (3) many precursory seismic patterns appear to be similar, even in regions of fundamentally different tectonic environments; and (4) some precursory seismic patterns are analogous to those in advance of extreme catastrophic events in other complex nonlinear systems (e.g., magnetic storms, solar flares, “starquakes”, etc.)—that are of high importance for further searches of the improved earthquake forecast/prediction algorithms and methods. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Vladimir Kossobokov, 2013. "Earthquake prediction: 20 years of global experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(2), pages 1155-1177, November.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1155-1177
    DOI: 10.1007/s11069-012-0198-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0198-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0198-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max Wyss & Anastasia Nekrasova & Vladimir Kossobokov, 2012. "Errors in expected human losses due to incorrect seismic hazard estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 927-935, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaohong Wu & Jing Jin & Tao Pan, 2015. "Empirical seismic vulnerability curve for mortality: case study of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 645-662, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Pavlenko, 2015. "Effect of alternative distributions of ground motion variability on results of probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1917-1930, September.
    2. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    3. Max Wyss & Philippe Rosset, 2013. "Mapping seismic risk: the current crisis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 49-52, August.
    4. Anastasiya Nekrasova & Vladimir Kossobokov, 2023. "Seismic risk assessment for the infrastructure in the regions adjacent to the Russian Federation Baikal–Amur Mainline based on the Unified Scaling Law for Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1995-2010, March.
    5. Vladimir G. Kossobokov & Anastasia K. Nekrasova, 2018. "Earthquake hazard and risk assessment based on unified scaling law for earthquakes: Altai–Sayan Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1435-1449, September.
    6. A. Nekrasova & V. Kossobokov & A. Peresan & A. Magrin, 2014. "The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 629-641, January.
    7. Imtiyaz A. Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2018. "Seismic hazard and risk assessment based on Unified Scaling Law for Earthquakes: thirteen principal urban agglomerations of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1509-1522, July.
    8. V. A. Pavlenko & A. Kijko, 2019. "Comparative study of three probabilistic methods for seismic hazard analysis: case studies of Sochi and Kamchatka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 775-791, June.
    9. G. Babayev & L. Telesca, 2014. "Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1647-1661, September.
    10. Imtiyaz Parvez & Anastasia Nekrasova & Vladimir Kossobokov, 2014. "Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 549-562, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1155-1177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.