IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i1p523-543.html
   My bibliography  Save this article

Landslide susceptibility zonation in Greece

Author

Listed:
  • N. Sabatakakis
  • G. Koukis
  • E. Vassiliades
  • S. Lainas

Abstract

The objective of this study is to perform a preliminary national-scale assessment of the landslide susceptibility in Greece using a landslide inventory derived from historical archives. The effects of controlling factors on landslide susceptibility combined with multivariate statistics have been evaluated using GIS aided mapping techniques. Thousand six hundred thirty-five landslide occurrences, mainly earth slides obtained from Public Authorities archives, covering a long time period were recorded and digitally stored using a spatial relational database management system. Ten landslide predisposing factors (predictors) were identified, while digital thematic maps on the spatial distribution of those factors were generated. The correlation between the landslide locations and predictor classes was analyzed by using the Landslide Relative Frequency. R-mode factor analysis was applied to study the interrelations between predictors (independent variables) while weighting coefficients were determined. Landslide susceptibility was derived from an algorithm which modeled the influence of predictors, and a susceptibility map was compiled. The landslide susceptibility map was verified using a data set of 375 new landslide locations. It is the first comprehensive attempt to illustrate the landslide susceptibility in the total country based on the interpretation of historical data only. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • N. Sabatakakis & G. Koukis & E. Vassiliades & S. Lainas, 2013. "Landslide susceptibility zonation in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 523-543, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:523-543
    DOI: 10.1007/s11069-012-0381-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0381-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0381-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadzinakos, I. & Yannacopoulos, D. & Faltsetas, C. & Ziourkas, K., 1991. "Application of the decision support system to the evaluation of landslide favourability in Greece," European Journal of Operational Research, Elsevier, vol. 50(1), pages 61-75, January.
    2. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    3. Núria Santacana & Baeza Baeza & Jordi Corominas & Ana De Paz & Jordi Marturiá, 2003. "A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 281-295, November.
    4. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    5. M. Ercanoglu & C. Gokceoglu & Th. Van Asch, 2004. "Landslide Susceptibility Zoning North of Yenice (NW Turkey) by Multivariate Statistical Techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 1-23, May.
    6. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    2. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    3. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    4. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    5. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    6. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    7. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    8. Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
    9. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    10. Spyridon Lainas & Nikolaos Depountis & Nikolaos Sabatakakis, 2021. "Preliminary Forecasting of Rainfall-Induced Shallow Landslides in the Wildfire Burned Areas of Western Greece," Land, MDPI, vol. 10(8), pages 1-20, August.
    11. Sofia Anagnostopoulou & Nikolaos Depountis & Nikolaos Sabatakakis & Panagiotis Pelekis, 2022. "Large Shear Strength Parameters for Landslide Analyses on Highly Weathered Flysch," Land, MDPI, vol. 11(8), pages 1-19, August.
    12. Guido Antonetti & Matteo Gentilucci & Domenico Aringoli & Gilberto Pambianchi, 2022. "Analysis of landslide Susceptibility and Tree Felling Due to an Extreme Event at Mid-Latitudes: Case Study of Storm Vaia, Italy," Land, MDPI, vol. 11(10), pages 1-21, October.
    13. Lynda Djerbal & Ibtissam Khoudi & Nassima Alimrina & Bachir Melbouci & Ramdane Bahar, 2017. "Assessment and mapping of earthquake-induced landslides in Tigzirt City, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1859-1879, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    2. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    3. E. Sujatha & Victor Rajamanickam, 2011. "Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 401-425, October.
    4. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    5. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    6. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    7. Rodeano Roslee & Alvyn Clancey Mickey & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Landslide susceptibility analysis lsa using weighted overlay method wom along the genting sempah to bentong highway pahang," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(2), pages 13-19, September.
    8. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    9. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    10. Prafull Singh & Ankit Sharma & Ujjwal Sur & Praveen Kumar Rai, 2021. "Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5233-5250, April.
    11. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    12. G. Chevalier & V. Medina & M. Hürlimann & A. Bateman, 2013. "Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 213-238, June.
    13. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    14. Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
    15. Zhu Liang & Wei Liu & Weiping Peng & Lingwei Chen & Changming Wang, 2022. "Improved Shallow Landslide Susceptibility Prediction Based on Statistics and Ensemble Learning," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    16. Taskin Kavzoglu & Emrehan Kutlug Sahin & Ismail Colkesen, 2015. "An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 471-496, March.
    17. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    18. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    19. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    20. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:523-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.