IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i3d10.1007_s11069-017-2831-5.html
   My bibliography  Save this article

Assessment and mapping of earthquake-induced landslides in Tigzirt City, Algeria

Author

Listed:
  • Lynda Djerbal

    (University of Sciences and Technology Houari Boumediene)

  • Ibtissam Khoudi

    (University Mouloud Mammeri of Tizi-Ouzou)

  • Nassima Alimrina

    (University of Sciences and Technology Houari Boumediene)

  • Bachir Melbouci

    (University Mouloud Mammeri of Tizi-Ouzou)

  • Ramdane Bahar

    (University of Sciences and Technology Houari Boumediene)

Abstract

The natural hazard assessment is hampered by many difficulties due to the complexity of the phenomenon and the need to manage simultaneously several natural and/or technological hazards. Such is the case of most unstable urban sites in Algeria. The paper presents a risk analysis study of landslides and their reactivation in Tigzirt coastal city, located in the north of Algeria, which is classified in a moderate seismic zone. The spatial techniques based on geographic information systems are used to assess landslide susceptibility and hazard. Two qualitative studies of landslide hazard assessment are conducted using parameters defining the Algerian landslides context. The hazard is evaluated by performing a combination of the landslide susceptibility and the urban density. Earthquake-induced landslide hazard is assessed taking into account the Algerian seismicity. The study led to determination and mapping of the hazard induced by Tigzirt landslides.

Suggested Citation

  • Lynda Djerbal & Ibtissam Khoudi & Nassima Alimrina & Bachir Melbouci & Ramdane Bahar, 2017. "Assessment and mapping of earthquake-induced landslides in Tigzirt City, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1859-1879, July.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2831-5
    DOI: 10.1007/s11069-017-2831-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2831-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2831-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Bouhadad & A. Benhamouche & H. Bourenane & A. Ait Ouali & M. Chikh & N. Guessoum, 2010. "The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (M w = 5.2)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 261-272, August.
    2. D. Machane & Y. Bouhadad & G. Cheikhlounis & J.-L. Chatelain & E. Oubaiche & K. Abbes & B. Guillier & R. Bensalem, 2008. "Examples of geomorphologic and geological hazards in Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(2), pages 295-308, May.
    3. L. Luzi & F. Pergalani, 1999. "Slope Instability in Static and Dynamic Conditions for Urban Planning: the ‘Oltre Po Pavese’ Case History (Regione Lombardia – Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(1), pages 57-82, July.
    4. N. Sabatakakis & G. Koukis & E. Vassiliades & S. Lainas, 2013. "Landslide susceptibility zonation in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 523-543, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waleed Abdelmoghny Metwaly Ogila, 2021. "Analysis and assessment of slope instability along international mountainous road in North Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2479-2517, April.
    2. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    3. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    4. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    5. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    6. Shah Naseer & Tanveer Ul Haq & Abdullah Khan & Javed Iqbal Tanoli & Nangyal Ghani Khan & Faizan-ur-Rehman Qaiser & Syed Tallataf Hussain Shah, 2021. "GIS-based spatial landslide distribution analysis of district Neelum, AJ&K, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 965-989, March.
    7. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    8. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    9. Yongchao Li & Jianping Chen & Chun Tan & Yang Li & Feifan Gu & Yiwei Zhang & Qaiser Mehmood, 2021. "Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2499-2522, February.
    10. Rachida Senouci & Nasr-Eddine Taibi & Ana Cláudia Teodoro & Lia Duarte & Hamidi Mansour & Rabia Yahia Meddah, 2021. "GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    11. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    12. Rodeano Roslee & Alvyn Clancey Mickey & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Landslide susceptibility analysis lsa using weighted overlay method wom along the genting sempah to bentong highway pahang," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(2), pages 13-19, September.
    13. M. Ercanoglu & C. Gokceoglu & Th. Van Asch, 2004. "Landslide Susceptibility Zoning North of Yenice (NW Turkey) by Multivariate Statistical Techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 1-23, May.
    14. Y. Bouhadad & A. Benhamouche & H. Bourenane & A. Ait Ouali & M. Chikh & N. Guessoum, 2010. "The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (M w = 5.2)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 261-272, August.
    15. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    16. Mehdi Guemache & Djamel Machane & Hamoud Beldjoudi & Sofiane Gharbi & Leila Djadia & Sihem Benahmed & Hayet Ymmel, 2010. "On a damaging earthquake-induced landslide in the Algerian Alps: the March 20, 2006 Laâlam landslide (Babors chain, northeast Algeria), triggered by the Kherrata earthquake (M w = 5.3)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 273-288, August.
    17. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    18. C. Abdallah & G. Faour, 2017. "Landslide hazard mapping of Ibrahim River Basin, Lebanon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 237-266, January.
    19. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    20. E. Binaghi & M. Boschetti & P.A. Brivio & I. Gallo & F. Pergalani & A. Rampini, 2004. "Prediction of Displacements in Unstable Areas Using a Neural Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 135-154, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2831-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.