IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i1p953-973.html
   My bibliography  Save this article

Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India

Author

Listed:
  • K. Sajinkumar
  • S. Anbazhagan

Abstract

The Western Ghats, the bold westerly escarpment of India paralleling the west coast, are characterized by different geologic and geomorphic units formed during different episodes of Earth’s history. The majority of these present day landforms evolved in response to the tectonic activity that the Western Ghats witnessed during the Tertiary period. The major structural features together with the geomorphic units have predominant role in the occurrence of cataclysmic landslides which the windward slope of Western Ghats witness during the peak monsoon season. The Kerala and Periyar lineaments, which are the sites of minor earthquakes, pass through the study area. Escarpments and structural hill systems are the vulnerable landforms for landslide occurrence. Due to the predominant role of these tectonic and geomorphic features in the capricious change of landforms, a study was carried out in this hilly terrain based on geomorphology. The study of soil, slope morphometry, relative relief, land use/land cover and hydrogeological conditions together with a multidimensional analysis in a GIS environment resulted in classifying the entire area into different landslide susceptible zones based on Bureau of Indian Standards. Moreover, the area is also divided into three zones based on the terrain conditions and the type of landslide occurrence. The methodology can well fit with any area experiencing the same terrain conditions and can be used to classify an area on the basis of landslide occurrence and geomorphology. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:1:p:953-973
    DOI: 10.1007/s11069-014-1358-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1358-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1358-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paola Gattinoni & Laura Scesi, 2013. "Lanslide hydrogeological susceptibility of Maierato (Vibo Valentia, Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 629-648, March.
    2. Marta Fernandez-Hernández & Carlos Paredes & Ricardo Castedo & Miguel Llorente & Rogelio la Vega-Panizo, 2012. "Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1247-1271, November.
    3. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    4. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiyuan Wang & Jundong Hou, 2023. "Hazard assessment of rainstorm-geohazard disaster chain based on multiple scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 589-610, August.
    2. Yadviga Tynchenko & Vladislav Kukartsev & Vadim Tynchenko & Oksana Kukartseva & Tatyana Panfilova & Alexey Gladkov & Van Nguyen & Ivan Malashin, 2024. "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    3. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    4. Rajkumar Andrewwinner & Sembulichampalayam Sennimalai Chandrasekaran, 2021. "Investigation on the Failure Mechanism of Rainfall-Induced Long-Runout Landslide at Upputhode, Kerala State of India," Land, MDPI, vol. 10(11), pages 1-25, November.
    5. K. Sajinkumar, 2015. "Trema orientalis: a suspected indicator plant for palaeo-landslides in tropical areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2169-2174, September.
    6. Ajaykumar Kadam & Animesh S. Karnewar & Bhavana Umrikar & R. N. Sankhua, 2019. "Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1809-1833, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    2. Emre Özþahin, 2015. "Landslide Susceptibility Analysis of Tekirdað City Using Geographic Information Systems (GIS) and Analytic Hierarchy Process (AHP)," Eurasian Academy Of Sciences Social Sciences Journal, Eurasian Academy Of Sciences, vol. 6(6), pages 50-71, November.
    3. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    4. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    5. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    6. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    7. Xiaoxiao Ju & Junjie Li & Chongxiang Sun & Bo Li, 2024. "Landslide Susceptibility Assessment Using a CNN–BiLSTM-AM Model," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
    8. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    9. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    11. Žiga Malek & Veronica Zumpano & Haydar Hussin, 2018. "Forest management and future changes to ecosystem services in the Romanian Carpathians," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1275-1291, June.
    12. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    13. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    14. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    15. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    16. C. Abdallah & G. Faour, 2017. "Landslide hazard mapping of Ibrahim River Basin, Lebanon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 237-266, January.
    17. Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
    18. Saeid SHABANI, 2017. "Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(9), pages 425-432.
    19. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    20. Pratap Ram & Vikram Gupta, 2022. "Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 473-501, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:1:p:953-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.