IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v68y2024ics2212041624000470.html
   My bibliography  Save this article

Quantification of the flood mitigation ecosystem service by coupling hydrological and hydrodynamic models

Author

Listed:
  • Xu, Zixuan
  • Ma, Jinfeng
  • Zheng, Hua
  • Wang, Lijing
  • Ying, Lingxiao
  • Li, Ruonan
  • Yang, Yanzheng

Abstract

Flood mitigation service provides crucial information for reducing flood disasters and assessing ecosystem capacities by quantifying how much damage is reduced and how many benefiting areas are protected during flood events. However, there remains a gap in the full-process quantification, which results in less precise simulation outcomes. In this study, we introduce a novel methodology to accurately quantify the flood mitigation service of ecosystems by coupling hydrological and hydrodynamic models. We utilized the Hydrological Simulation Program-Fortran (HSPF) model to simulate peak flow and flood volume and then used these data as inputs for the Environmental Fluid Dynamics Code (EFDC) hydrodynamic model to simulate the spatial extent and depth of flood inundation. The contribution and capacity of the ecosystem are reflected through the reduction in peak flow, flood volume, and inundation areas. We used the Nandu Basin flood event in October 2010 as a case study to illustrate our approach, comparing our assessment results with those simulated by the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the Height Above Nearest Drainage (HAND) model. The results demonstrate that coupling the HSPF model (R2 = 0.93) with the EFDC model (overlap ratio = 83.71 %) allows for precise quantification of flood mitigation service. The process-based hydrological and hydrodynamic models show a high correlation with the simpler and faster InVEST and HAND model simulations, with the full-process models reducing relative errors by 7.66 % and 5.25 % respectively. This study offers a promising approach for accurately and comprehensively assessing flood mitigation ecosystem service and provides a basis for model selection.

Suggested Citation

  • Xu, Zixuan & Ma, Jinfeng & Zheng, Hua & Wang, Lijing & Ying, Lingxiao & Li, Ruonan & Yang, Yanzheng, 2024. "Quantification of the flood mitigation ecosystem service by coupling hydrological and hydrodynamic models," Ecosystem Services, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:ecoser:v:68:y:2024:i:c:s2212041624000470
    DOI: 10.1016/j.ecoser.2024.101640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041624000470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2024.101640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:68:y:2024:i:c:s2212041624000470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.