IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v43y2007i2p187-198.html
   My bibliography  Save this article

A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood

Author

Listed:
  • Scott Curtis
  • Thomas Crawford
  • Scott Lecce

Abstract

The volumetric rainfall attributed to Hurricane Floyd in 1999 was computed for the bulk of the Tar, Neuse, and Cape Fear River Basins in eastern North Carolina, USA from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) research product, and compared with volumes computed using kriged gauge data and one centrally located radar. TMPA showed similar features in the band of heaviest rainfall with kriged and radar data, but was higher in the basin-scale integrations. Furthermore, Floyd’s direct runoff volumes were computed and divided by the volumetric rainfall estimates to give runoff coefficients for the three basins. The TMPA, having the larger storm totals, would suggest greater infiltration during Floyd than the gauge and radar estimates would. Finally, we discuss a concept for adjusting the United States Department of Agriculture Natural Resources Conservation Service rainfall-runoff model when predicting discharge values from real-time TMPA in ungauged river basins. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Scott Curtis & Thomas Crawford & Scott Lecce, 2007. "A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 187-198, November.
  • Handle: RePEc:spr:nathaz:v:43:y:2007:i:2:p:187-198
    DOI: 10.1007/s11069-006-9093-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-9093-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-9093-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faisal Hossain, 2006. "Towards Formulation of a Space-borne System for Early Warning of Floods: Can Cost-Effectiveness Outweigh Prediction Uncertainty?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 263-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo Han & Steven Burian & J. Shepherd, 2011. "Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 733-747, March.
    2. Michael Friedel, 2008. "Regularized joint inverse estimation of extreme rainfall amounts in ungauged coastal basins of El Salvador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 15-34, July.
    3. Weili Duan & Bin He & Kaoru Takara & Pingping Luo & Daniel Nover & Yosuke Yamashiki & Wenrui Huang, 2014. "Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1255-1267, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Shahinoor Rahman & Liping Di, 2017. "The state of the art of spaceborne remote sensing in flood management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1223-1248, January.
    2. Tsun-Hua Yang & Wen-Cheng Liu, 2020. "A General Overview of the Risk-Reduction Strategies for Floods and Droughts," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    3. Faisal Hossain & Nitin Katiyar & Yang Hong & Aaron Wolf, 2007. "The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 199-210, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:43:y:2007:i:2:p:187-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.