IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v26y2002i3p203-225.html
   My bibliography  Save this article

Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions

Author

Listed:
  • F. Nelson
  • O. Anisimov
  • N. Shiklomanov

Abstract

The permafrost regions currently occupy about one quarter of the Earth's land area.Climate-change scenarios indicate that global warming will be amplified in the polarregions, and could lead to a large reduction in the geographic extent of permafrost.Development of natural resources, transportation networks, and human infrastructurein the high northern latitudes has been extensive during the second half of the twentiethcentury. In areas underlain by ice-rich permafrost, infrastructure could be damagedseverely by thaw-induced settlement of the ground surface accompanying climatechange. Permafrost near the current southern margin of its extent is degrading, andthis process may involve a northward shift in the southern boundary of permafrostby hundreds of kilometers throughout much of northern North America and Eurasia.A long-term increase in summer temperatures in the high northern latitudes couldalso result in significant increases in the thickness of the seasonally thawed layerabove permafrost, with negative impacts on human infrastructure located on ice-richterrain. Experiments involving general circulation model scenarios of global climatechange, a mathematical solution for the thickness of the active layer, and digitalrepresentations of permafrost distribution and ice content indicates potential forsevere disruption of human infrastructure in the permafrost regions in response toanthropogenic climate change. A series of hazard zonation maps depicts generalizedpatterns of susceptibility to thaw subsidence. Areas of greatest hazard potential includecoastlines on the Arctic Ocean and parts of Alaska, Canada, and Siberia in whichsubstantial development has occurred in recent decades. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
  • Handle: RePEc:spr:nathaz:v:26:y:2002:i:3:p:203-225
    DOI: 10.1023/A:1015612918401
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1015612918401
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1015612918401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frederick E. Nelson & Oleg A. Anisimov, 1993. "Permafrost zonation in Russia under anthropogenic climatic change," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 4(2), pages 137-148, April.
    2. Frederick E. Nelson & Oleg A. Anisimov & Nikolay I. Shiklomanov, 2001. "Subsidence risk from thawing permafrost," Nature, Nature, vol. 410(6831), pages 889-890, April.
    3. T. E. Osterkamp & V. E. Romanovsky, 1999. "Evidence for warming and thawing of discontinuous permafrost in Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 10(1), pages 17-37, January.
    4. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    5. Matthew Sturm & Charles Racine & Kenneth Tape, 2001. "Increasing shrub abundance in the Arctic," Nature, Nature, vol. 411(6837), pages 546-547, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    2. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    3. James Ford & Clara Champalle & Pamela Tudge & Rudy Riedlsperger & Trevor Bell & Erik Sparling, 2015. "Evaluating climate change vulnerability assessments: a case study of research focusing on the built environment in northern Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1267-1288, December.
    4. Pallab Mozumder & Ryan Helton & Robert P. Berrens, 2009. "Provision of a Wildfire Risk Map: Informing Residents in the Wildland Urban Interface," Risk Analysis, John Wiley & Sons, vol. 29(11), pages 1588-1600, November.
    5. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
    6. Mauro Guglielmin & Stefano Ponti & Emanuele Forte & Nicoletta Cannone, 2021. "Recent thermokarst evolution in the Italian Central Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 299-317, April.
    7. Zhongqiong Zhang & Qingbai Wu, 2012. "Thermal hazards zonation and permafrost change over the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 403-423, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komi S Messan & Robert M Jones & Stacey J Doherty & Karen Foley & Thomas A Douglas & Robyn A Barbato, 2020. "The role of changing temperature in microbial metabolic processes during permafrost thaw," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    5. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    6. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    7. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    8. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    9. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    10. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    11. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    12. Evan Mills, 2007. "Synergisms between climate change mitigation and adaptation: an insurance perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 809-842, June.
    13. Shi, Yusheng & Sasai, Takahiro & Yamaguchi, Yasushi, 2014. "Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010," Ecological Modelling, Elsevier, vol. 272(C), pages 98-115.
    14. Zongxing, Li & Qi, Feng & Zongjie, Li & Xufeng, Wang & Juan, Gui & Baijuan, Zhang & Yuchen, Li & Xiaohong, Deng & Jian, Xue & Wende, Gao & Anle, Yang & Fusen, Nan & Pengfei, Liang, 2021. "Reversing conflict between humans and the environment - The experience in the Qilian Mountains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Kathuroju, Naven & White, Michael A. & Symanzik, Jürgen & Schwartz, Mark D. & Powell, James A. & Nemani, Ramakrishna R., 2007. "On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models," Ecological Modelling, Elsevier, vol. 201(2), pages 144-156.
    16. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    17. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    18. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    19. Shanin, Vladimir & Komarov, Alexander & Khoraskina, Yulia & Bykhovets, Sergey & Linkosalo, Tapio & Mäkipää, Raisa, 2013. "Carbon turnover in mixed stands: Modelling possible shifts under climate change," Ecological Modelling, Elsevier, vol. 251(C), pages 232-245.
    20. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:26:y:2002:i:3:p:203-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.