IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v272y2014icp98-115.html
   My bibliography  Save this article

Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010

Author

Listed:
  • Shi, Yusheng
  • Sasai, Takahiro
  • Yamaguchi, Yasushi

Abstract

Carbon emissions (CE) from fire-induced biomass burning have a marked effect on interannual fluctuations in global atmospheric carbon dioxide concentrations. Biomass burning in Southeast Asia (SEA) is a dominant contributor toward these emissions, primarily through the effects of El Niño-induced droughts and deforestation. Nonetheless, our understanding of the spatiotemporal patterns and variability in fire CE of SEA is limited. In this study, fire CE in SEA were estimated at a spatial resolution of 5km during 2001–2010 using the recently developed MODerate resolution Imaging Spectroradiometer (MODIS) burned area products and the Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data (BEAMS) with fire CE embedded. Three series of burned area data from MCD64A1, MCD45A1 and Global Fire Emissions Database version 3 (GFED3) in SEA were employed to estimate fire CE. In general, the three burned area datasets showed consistent temporal variation from 2001 to 2010 with average annual burned areas measuring 68,104, 50,933 and 61,263km2year−1, respectively. Burned areas were predominantly concentrated in Myanmar, northern Thailand, eastern Cambodia, and northern Laos, with marked differences in Sumatra and Kalimantan of Indonesia where peatland is extensively distributed. Fire CE estimated in the three simulations (BEAMS/MCD64A1, BEAMS/MCD45A1-Peat and BEAMS/GFED) exhibited similar spatial patterns with respect to burned area, with average annual fire CE of 232.6, 214.1 and 228.8 TgC, respectively, of which, in our current study the best result among the three estimations was BEAMS/MCD45A1-Peat, which was close to that obtained by GFED3 with 210.7 TgC. Aerosol Optical Depth (AOD) values showed good consistency with both fire CE and Multivariate ENSO (El Niño Southern Oscillation) Index values during 2001–2010, likely because of the deep peat soil burning under the influence of the El Niño phenomenon and Indian Ocean Dipole pattern in combination with anthropogenic disturbance through deforestation for palm oil plantation production.

Suggested Citation

  • Shi, Yusheng & Sasai, Takahiro & Yamaguchi, Yasushi, 2014. "Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010," Ecological Modelling, Elsevier, vol. 272(C), pages 98-115.
  • Handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:98-115
    DOI: 10.1016/j.ecolmodel.2013.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Jones, 2006. "ASEAN and transboundary haze pollution in Southeast Asia," Asia Europe Journal, Springer, vol. 4(3), pages 431-446, September.
    2. Kimberly M. Carlson & Lisa M. Curran & Gregory P. Asner & Alice McDonald Pittman & Simon N. Trigg & J. Marion Adeney, 2013. "Carbon emissions from forest conversion by Kalimantan oil palm plantations," Nature Climate Change, Nature, vol. 3(3), pages 283-287, March.
    3. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    4. Sasai, Takahiro & Nakai, Saori & Setoyama, Yuko & Ono, Keisuke & Kato, Soushi & Mano, Masayoshi & Murakami, Kazutaka & Miyata, Akira & Saigusa, Nobuko & Nemani, Ramakrishna R. & Nasahara, Kenlo N., 2012. "Analysis of the spatial variation in the net ecosystem production of rice paddy fields using the diagnostic biosphere model, BEAMS," Ecological Modelling, Elsevier, vol. 247(C), pages 175-189.
    5. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    6. Sasai, T. & Okamoto, K. & Hiyama, T. & Yamaguchi, Y., 2007. "Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale," Ecological Modelling, Elsevier, vol. 208(2), pages 135-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Royston Uning & Mohd Talib Latif & Murnira Othman & Liew Juneng & Norfazrin Mohd Hanif & Mohd Shahrul Mohd Nadzir & Khairul Nizam Abdul Maulud & Wan Shafrina Wan Mohd Jaafar & Nor Fitrah Syazwani Said, 2020. "A Review of Southeast Asian Oil Palm and Its CO 2 Fluxes," Sustainability, MDPI, vol. 12(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    2. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    3. Nicola K Abram & Douglas C MacMillan & Panteleimon Xofis & Marc Ancrenaz & Joseph Tzanopoulos & Robert Ong & Benoit Goossens & Lian Pin Koh & Christian Del Valle & Lucy Peter & Alexandra C Morel & Isa, 2016. "Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    4. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    5. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    6. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    7. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    8. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    9. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    10. Zepharovich, Elena & Ceddia, M. Graziano & Rist, Stephan, 2021. "Social multi-criteria evaluation of land-use scenarios in the Chaco Salteño: Complementing the three-pillar sustainability approach with environmental justice," Land Use Policy, Elsevier, vol. 101(C).
    11. Lee, Janice Ser Huay & Miteva, Daniela A. & Carlson, Kimberly M. & Heilmayr, Robert & Saif, Omar, 2020. "Does the oil palm certification create trade-offs between environment and development in Indonesia?," SocArXiv zrwpd, Center for Open Science.
    12. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    13. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    14. Meine van Noordwijk & Robin Matthews & Fahmuddin Agus & Jenny Farmer & Louis Verchot & Kristell Hergoualc’h & Sebastian Persch & Hesti Tata & Betha Lusiana & Atiek Widayati & Sonya Dewi, 2014. "Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 887-905, August.
    15. Mikkel Kruuse & Kasper Reming Tangbæk & Kristjan Jespersen & Caleb Gallemore, 2019. "Navigating Input and Output Legitimacy in Multi-Stakeholder Initiatives: Institutional Stewards at Work," Sustainability, MDPI, vol. 11(23), pages 1-27, November.
    16. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    17. Murphy, David M. A. & Berazneva, Julia & Lee, David R., 2015. "Fuelwood Source Substitution and Shadow Prices in Western Kenya," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205084, Agricultural and Applied Economics Association.
    18. Araujo, Rafael & Costa, Francisco J M & Sant'Anna, Marcelo, 2020. "Efficient Forestation in the Brazilian Amazon: Evidence from a Dynamic Model," SocArXiv 8yfr7, Center for Open Science.
    19. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    20. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:98-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.