IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i13d10.1007_s11069-024-06690-2.html
   My bibliography  Save this article

Etiological study on forest fire accidents using Bow-tie model and Bayesian network

Author

Listed:
  • Shi-yi Li

    (Fuzhou University)

  • Xin Li

    (Fuzhou University)

  • Fu-qiang Yang

    (Fuzhou University
    Fuzhou University)

  • Fan-liang Ge

    (Fuzhou University)

Abstract

Forest fires will do great harm to the ecological environment. At present, the most important research field is the study of the causes of forest fires, and the failure to determine the causes will greatly hinder the prevention, control and safety management of forest fires. In order to solve this problem, this paper constructs a Bayesian network to calculate the state probability and sensitivity after determining the factors related to forest fire. Secondly, on the basis of constructing Bayesian network, the Bow-tie model is constructed according to the consequences of forest fire. The constructed Bow-tie model contains 7 influencing factors and 5 consequences, and 26 corresponding control measures. Finally, through the analysis of Bayesian network and bow tie model, the forest fire prevention system is constructed. According to the calculation results of the Bayesian network, the probability of forest fires being at high risk of occurrence is higher for three factors: agriculture, forestry and water expenditure, rural population density and precipitation. Changes in rural population density and humidity have the greatest impact on the occurrence of forest fires. In combination with the Bow-tie model, human factors are the most important factors leading to the occurrence of forest fires, and the material, environmental, and management factors are the secondary factors. Based on the forest control system, the prevention and management measures are put forward. This research can provide reference for the control of forest fire and reduce the occurrence of similar forest fires.

Suggested Citation

  • Shi-yi Li & Xin Li & Fu-qiang Yang & Fan-liang Ge, 2024. "Etiological study on forest fire accidents using Bow-tie model and Bayesian network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 12427-12449, October.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06690-2
    DOI: 10.1007/s11069-024-06690-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06690-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06690-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Yuan & Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 278-291, February.
    2. Deniz Arca & Mercan Hacısalihoğlu & Ş. Hakan Kutoğlu, 2020. "Producing forest fire susceptibility map via multi-criteria decision analysis and frequency ratio methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 73-89, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    2. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    3. Arman Nedjati & Mohammad Yazdi & Rouzbeh Abbassi, 2022. "A sustainable perspective of optimal site selection of giant air-purifiers in large metropolitan areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8747-8778, June.
    4. Laraib Ahmad & Sameer Saran, 2024. "Anthropogenic evidences as precursors to forest fire trigger in Western Himalayan Region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16827-16846, July.
    5. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    7. Huanhuan Wang & Yong Zhang & Runqiu Li & Yan Cui & Andan He & Weiqing Jiang, 2023. "Analyzing the Risk Factors of Hazardous Chemical Road Transportation Accidents Based on Grounded Theory and a Bayesian Network," Sustainability, MDPI, vol. 15(24), pages 1-21, December.
    8. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    9. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    10. Özer Akyürek, 2023. "Spatial and temporal analysis of vegetation fires in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1105-1124, May.
    11. Yingying Xing & Shengdi Chen & Shengxue Zhu & Jian Lu, 2020. "Analysis Factors That Influence Escalator-Related Injuries in Metro Stations Based on Bayesian Networks: A Case Study in China," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    12. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Serkan Erbis & Zeynep Ok & Jacqueline A. Isaacs & James C. Benneyan & Sagar Kamarthi, 2016. "Review of Research Trends and Methods in Nano Environmental, Health, and Safety Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(8), pages 1644-1665, August.
    14. Rongchen Zhu & Xin Li & Xiaofeng Hu & Deshui Hu, 2019. "Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network," Sustainability, MDPI, vol. 12(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06690-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.