IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v9y2021i2p18-d523945.html
   My bibliography  Save this article

Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index

Author

Listed:
  • Katleho Makatjane

    (Faculty of Economic and Management Sciences, Department of Statistics and Operations Research, North-West University, Mmabatho 2745, South Africa)

  • Ntebogang Moroke

    (Faculty of Economic and Management Sciences, Department of Statistics and Operations Research, North-West University, Mmabatho 2745, South Africa)

Abstract

During the past decades, seasonal autoregressive integrated moving average (SARIMA) had become one of a prevalent linear models in time series and forecasting. Empirical research advocated that forecasting with non-linear models can be an encouraging alternative to traditional linear models. Linear models are often compared to non-linear models with mixed conclusions in terms of superiority in forecasting performance. Therefore, the aim of this study is to build an early warning system (EWS) model for extreme daily losses for financial stock markets. A logistic model tree (LMT) is used in collaboration with a seasonal autoregressive integrated moving average-Markov-Switching exponential generalised autoregressive conditional heteroscedasticity-generalised extreme value distribution (SARIMA-MS-EGARCH-GEVD) estimates. A time series of the study is a five-day financial time series exchange/Johannesburg stock exchange-all share index (FTSE/JSE-ALSI) for the period of 4 January 2010 to 31 July 2020. The study is set into a two-stage framework. Firstly, SARIMA model is fitted to stock returns in order to obtain independently and identically distributed (i.i.d) residuals and fit the MS(k)-EGARCH(p,q)-GEVD to i.i.d residuals; while, in the second stage, we set-up an EWS model. The results of the estimated MS(2)-EGARCH(1,1) -GEVD revealed that the conditional distribution of returns is highly volatile giving the expected duration to approximately 36 months and 4 days in regime one and 58 months and 2 days in regime two. We further found that any degree losses above 25% implies that there will be no further losses. Using the seven statistical loss functions, the estimated S A R I M A ( 2 , 1 , 0 ) × ( 2 , 1 , 0 ) 240 − M S ( 2 ) − E G A R C H ( 1 , 1 ) − G E V D proved to be the most appropriate model for predicting extreme regimes losses as it was ranked at 71%. Finally, the results of EWS model exhibit reasonably an overall performance of 98%, sensitivity of 79.89% and specificity of 98.40% respectively. The model further indicated a success classification rate of 89% and a prediction rate of 95%. This is a promising technique for EWS. The findings also confirmed 63% and 51% of extreme losses for both training sample and validation sample to be correctly classified. The findings of this study are useful for decision makers and financial sector for future use and planning. Furthermore, a base for future researchers for conducting studies on emerging markets, have been contributed. These results are also important to risk managers and and investors.

Suggested Citation

  • Katleho Makatjane & Ntebogang Moroke, 2021. "Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index," IJFS, MDPI, vol. 9(2), pages 1-18, March.
  • Handle: RePEc:gam:jijfss:v:9:y:2021:i:2:p:18-:d:523945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/9/2/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/9/2/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher CRUZ & Claire MAPA, 2013. "An Early Warning System For Inflation In The Philippines Using Markov-Switching And Logistic Regression Models," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 4(2), pages 136-150.
    2. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    3. Graciela Kaminsky & Saul Lizondo & Carmen M. Reinhart, 1998. "Leading Indicators of Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 1-48, March.
    4. Haytem Troug & Matt Murray, 2020. "Crisis determination and financial contagion: an analysis of the Hong Kong and Tokyo stock markets using an MSBVAR approach," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(8), pages 1548-1572, December.
    5. Wang, Lu & Ma, Feng & Niu, Tianjiao & He, Chengting, 2020. "Crude oil and BRICS stock markets under extreme shocks: New evidence," Economic Modelling, Elsevier, vol. 86(C), pages 54-68.
    6. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    7. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    9. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "Optimal design of early warning systems for sovereign debt crises," International Journal of Forecasting, Elsevier, vol. 23(1), pages 85-100.
    10. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    11. Jeanne, Olivier & Masson, Paul, 2000. "Currency crises, sunspots and Markov-switching regimes," Journal of International Economics, Elsevier, vol. 50(2), pages 327-350, April.
    12. Mr. Axel Schimmelpfennig & Nouriel Roubini & Paolo Manasse, 2003. "Predicting Sovereign Debt Crises," IMF Working Papers 2003/221, International Monetary Fund.
    13. Davis, E. Philip & Karim, Dilruba, 2008. "Comparing early warning systems for banking crises," Journal of Financial Stability, Elsevier, vol. 4(2), pages 89-120, June.
    14. Ntebogang Dinah Moroke, 2014. "The robustness and accuracy of Box-Jenkins ARIMA in modeling and forecasting household debt in South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 6(9), pages 748-759.
    15. Arias, Guillaume & Erlandsson, Ulf, 2004. "Regime switching as an alternative early warning system of currency crises - an application to South-East Asia," Working Papers 2004:11, Lund University, Department of Economics.
    16. Christopher John F CRUZ & Claire Dennis S MAPA, 2013. "An Early Warning System For Inflation In The Philippines Using Markov Switching And Logistic Regression Models," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 4(2), pages 137-152.
    17. Mr. Abdul d Abiad, 2003. "Early Warning Systems: A Survey and a Regime-Switching Approach," IMF Working Papers 2003/032, International Monetary Fund.
    18. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    19. Bauwens, Luc & De Backer, Bruno & Dufays, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 207-229.
    20. Raihan, Tasneem, 2017. "Performance of Markov-Switching GARCH Model Forecasting Inflation Uncertainty," MPRA Paper 82343, University Library of Munich, Germany.
    21. Raffaella Calabrese & Paolo Giudici, 2015. "Estimating bank default with generalised extreme value regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1783-1792, November.
    22. Theil, Henri, 1971. "An Economic Theory of the Second Moments of Disturbances of Behavioral Equations," American Economic Review, American Economic Association, vol. 61(1), pages 190-194, March.
    23. Claudio Borio & Mathias Drehmann, 2009. "Assessing the risk of banking crises - revisited," BIS Quarterly Review, Bank for International Settlements, March.
    24. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    25. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allaj, Erindi & Sanfelici, Simona, 2023. "Early Warning Systems for identifying financial instability," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1777-1803.
    2. K. Batu Tunay, 2010. "Banking Crises and Early Warning Systems: A Model Suggestion for Turkish Banking Sector," Journal of BRSA Banking and Financial Markets, Banking Regulation and Supervision Agency, vol. 4(1), pages 9-46.
    3. Christofides, Charis & Eicher, Theo S. & Papageorgiou, Chris, 2016. "Did established Early Warning Signals predict the 2008 crises?," European Economic Review, Elsevier, vol. 81(C), pages 103-114.
    4. Daniela Bragoli & Piero Ganugi & Giancarlo Ianulardo, 2013. "Gini’s transvariation analysis: an application on financial crises in developing countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(1), pages 153-174, February.
    5. Kristina Kittelmann & Marcel Tirpak & Rainer Schweickert & Lúcio Vinhas De Souza, 2006. "From Transition Crises to Macroeconomic Stability? Lessons from a Crises Early Warning System for Eastern European and CIS Countries," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 48(3), pages 410-434, September.
    6. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Mohammad Karimi & Marcel‐Cristian Voia, 2019. "Empirics of currency crises: A duration analysis approach," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 428-449, July.
    8. Tjeerd M. Boonman & Jan P. A. M. Jacobs & Gerard H. Kuper & Alberto Romero, 2019. "Early Warning Systems for Currency Crises with Real-Time Data," Open Economies Review, Springer, vol. 30(4), pages 813-835, September.
    9. Candelon, Bertrand & Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2014. "Currency crisis early warning systems: Why they should be dynamic," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1016-1029.
    10. Mioara CHIRITA & Daniela SARPE, 2011. "Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 44-48.
    11. Tjeerd M. Boonman & Jan P.A.M. Jacobs & Gerard H. Kuper, 2011. "Why didn't the Global Financial Crisis hit Latin America?," CIRANO Working Papers 2011s-63, CIRANO.
    12. Cevik, Emrah I. & Dibooglu, Sel & Kenc, Turalay, 2016. "Financial stress and economic activity in some emerging Asian economies," Research in International Business and Finance, Elsevier, vol. 36(C), pages 127-139.
    13. de Haan, Jakob & Fang, Yi & Jing, Zhongbo, 2020. "Does the risk on banks’ balance sheets predict banking crises? New evidence for developing countries," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 254-268.
    14. Dieter Gerdesmeier & Hans‐Eggert Reimers & Barbara Roffia, 2010. "Asset Price Misalignments and the Role of Money and Credit," International Finance, Wiley Blackwell, vol. 13(3), pages 377-407, December.
    15. Frankel, Jeffrey & Saravelos, George, 2012. "Can leading indicators assess country vulnerability? Evidence from the 2008–09 global financial crisis," Journal of International Economics, Elsevier, vol. 87(2), pages 216-231.
    16. Andrew Berg & Eduardo Borensztein & Catherine Pattillo, 2005. "Assessing Early Warning Systems: How Have They Worked in Practice?," IMF Staff Papers, Palgrave Macmillan, vol. 52(3), pages 1-5.
    17. Arias, Guillaume & Erlandsson, Ulf, 2004. "Regime switching as an alternative early warning system of currency crises - an application to South-East Asia," Working Papers 2004:11, Lund University, Department of Economics.
    18. John Dooley & Dieter Gramlich & Mikhail V. Oet & Stephen J. Ong & Peter Sarlin, 2015. "Evaluating the Information Value for Measures of Systemic Conditions," Working Papers (Old Series) 1513, Federal Reserve Bank of Cleveland.
    19. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    20. Miss Gabriela Dobrescu & Iva Petrova & Nazim Belhocine & Mr. Emanuele Baldacci, 2011. "Assessing Fiscal Stress," IMF Working Papers 2011/100, International Monetary Fund.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:9:y:2021:i:2:p:18-:d:523945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.