IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i3d10.1007_s11069-023-05984-1.html
   My bibliography  Save this article

Using machine learning techniques in multi-hazards assessment of Golestan National Park, Iran

Author

Listed:
  • Hassan Faramarzi

    (Tarbiat Modares University)

  • Seyed Mohsen Hosseini

    (Tarbiat Modares University)

  • Hamid Reza Pourghasemi

    (Shiraz University)

  • Mahdi Farnaghi

    (University of Twente)

Abstract

Golestan National Park is one of the oldest biosphere reserves exposed to environmental hazards due to growing demand, geographical location of the park, mountainous conditions, and developments in the last five decades. This study aimed to evaluate potential environmental hazards using machine-learning techniques. This study applied maximum entropy, random forest, boosted regression tree, generalized additive model, and support vector machine methods to model environmental hazards and evaluated the impact of affecting agents and their area of influence. After data collection and preprocessing, the models were implemented, tuned, and trained, and their accuracies were determined using the “receiver operating characteristic curve”. The results indicate the high importance of climatic and human variables, including rainfall, temperature, presence of shepherds, and villagers for fire hazards, elevation, transit roads, temperature, and rainfall for the formation of floodplains, and elevation, transit roads, rainfall, and topographic wetness index in the occurrence of landslides in the national park. The boosted regression tree model with a “AUC value” of 0.98 for flooding, 0.97 for fire, and 0.93 for landslides hazards, had the best performance. The modeling estimated that, on average, 16.2% of the area of Golestan National Park has a high potential for landslides, 14% has a high potential for fire, and 7.2% has a high potential for flooding. So, results of this study can be applied by land use planners, decision makers, and managers of various organizations to decrease effects of these hazards Golestan National Park (GNP).

Suggested Citation

  • Hassan Faramarzi & Seyed Mohsen Hosseini & Hamid Reza Pourghasemi & Mahdi Farnaghi, 2023. "Using machine learning techniques in multi-hazards assessment of Golestan National Park, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3231-3255, July.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05984-1
    DOI: 10.1007/s11069-023-05984-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05984-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05984-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed Mallick & Saeed Alqadhi & Swapan Talukdar & Majed AlSubih & Mohd. Ahmed & Roohul Abad Khan & Nabil Ben Kahla & Saud M. Abutayeh, 2021. "Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    2. Pouteau, Robin & Meyer, Jean-Yves & Stoll, Benoît, 2011. "A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests," Ecological Modelling, Elsevier, vol. 222(15), pages 2631-2641.
    3. Ujjwal Sur & Prafull Singh & Praveen Kumar Rai & Jay Krishna Thakur, 2021. "Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13526-13554, September.
    4. Vahedberdi Sheikh & Aiding Kornejady & Majid Ownegh, 2019. "Application of the coupled TOPSIS–Mahalanobis distance for multi-hazard-based management of the target districts of the Golestan Province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1335-1365, April.
    5. Forood Sharifi & S. Samadi & Catherine Wilson, 2012. "Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 533-550, March.
    6. Cantarello, Elena & Newton, Adrian C. & Hill, Ross A. & Tejedor-Garavito, Natalia & Williams-Linera, Guadalupe & López-Barrera, Fabiola & Manson, Robert H. & Golicher, Duncan J., 2011. "Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes," Ecological Modelling, Elsevier, vol. 222(5), pages 1112-1128.
    7. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    3. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    4. Saeed Davar & Masoud Nobahar & Mohammad Sadik Khan & Farshad Amini, 2022. "The Development of PSO-ANN and BOA-ANN Models for Predicting Matric Suction in Expansive Clay Soil," Mathematics, MDPI, vol. 10(16), pages 1-38, August.
    5. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    6. Deqiang Cheng & Chunliu Gao, 2022. "Regionalization Research of Mountain-Hazards Developing Environments for the Eurasian Continent," Land, MDPI, vol. 11(9), pages 1-19, September.
    7. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    8. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    9. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    10. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    11. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    12. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    13. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    14. Vahedberdi Sheikh & Aiding Kornejady & Majid Ownegh, 2019. "Application of the coupled TOPSIS–Mahalanobis distance for multi-hazard-based management of the target districts of the Golestan Province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1335-1365, April.
    15. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    16. Abou-Soufianou Sadda & Maud Loireau & Nouhou Salifou Jangorzo & Hassane Bil-Assanou Issoufou & Jean-Luc Chotte, 2023. "Standardized Description of Degraded Land Reclamation Actions and Mapping of Actors’ Roles: A Key Step for Action in Combatting Desertification (Niger)," Land, MDPI, vol. 12(5), pages 1-17, May.
    17. Meine van Noordwijk, 2021. "Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development," Land, MDPI, vol. 10(7), pages 1-24, July.
    18. Sharmiladevi, R. & Ravikumar, V., 2021. "Simulation of nitrogen fertigation schedule for drip irrigated paddy," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
    20. Blackmore, Ivy & Iannotti, Lora & Rivera, Claudia & Waters, William F. & Lesorogol, Carolyn, 2021. "Land degradation and the link to increased livelihood vulnerabilities among indigenous populations in the Andes of Ecuador," Land Use Policy, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05984-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.