IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics0378377422004127.html
   My bibliography  Save this article

The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment

Author

Listed:
  • Asghari, Shiva
  • Zeinalzadeh, Kamran
  • Kheirfam, Hossein
  • Habibzadeh Azar, Behnam

Abstract

Ecosystem-based approaches, including soil inoculation, have been considered to improve the soil water behavior, for the purpose of ensuring better irrigation management on farms. This study was, therefore, conducted to assess the responses of the moisture characteristic curve (MCC) and saturated hydraulic conductivity (SHC) to soil inoculation with cyanobacteria. To this end, the most suitable existing cyanobacteria (i.e., Nostoc sp. and Oscillatoria sp.) from the original soil were inoculated on clay, loam and sand textures at a small cylinder scale. After 35 days, the MCC and SHC of the treatments (six control and inoculation treatments in three repetitions) were measured using the sandbox and pressure plate, and constant head method, respectively. The results showed that, in the control treatment, the volumetric water content of the clay, loam and sand textures was 38–69%, 28–58% and 8–24%, respectively. Meanwhile, the inoculation of cyanobacteria led to a significant (P < 0.05) increase in the MCC of the loam and sand soils; their values were 36–65% and 16–31%, respectively. In the control, the SHC of the clay, loam and sand textures was 0.42, 0.54 and 1.21 cm min−1, respectively; meanwhile, this was 0.37, 0.50 and 0.67 cm min−1 for the inoculated treatments, respectively. On the other hand, the inoculated cyanobacteria reduced the SHC of the sand soils by 44%. We also found that the inoculated cyanobacteria perceptibly improved the soil surface physical and chemical properties, which could play a key role in determining the soil hydraulic and hydrologic behavior. Overall, we found that soil inoculation with cyanobacteria could be an effective approach in improving the soil water behavior, especially in coarse texture soils; thus, it could serve as a suitable irrigation and drainage management method in agricultural lands.

Suggested Citation

  • Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422004127
    DOI: 10.1016/j.agwat.2022.107865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yike Wang & Lei Ge & Shi Chendi & Huanyuan Wang & Jichang Han & Zhen Guo & Yangjie Lu, 2020. "Analysis on hydraulic characteristics of improved sandy soil with soft rock," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-13, January.
    2. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    3. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    2. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    3. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    4. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    6. Haytham M. Salem & Adil A. Meselhy, 2021. "A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2937-2955, February.
    7. Tugrul Yakupoglu & Recep Gundogan & Turgay Dindaroglu & Kadir Kusvuran & Veysel Gokmen & Jesus Rodrigo-Comino & Yeboah Gyasi-Agyei & Artemi Cerdà, 2021. "Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    8. Yang Yu & Jesús Rodrigo-Comino, 2021. "Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach," Land, MDPI, vol. 10(2), pages 1-15, February.
    9. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    10. Saskia Keesstra & Tamara Metze & Linda Ofori & Marleen Buizer & Saskia Visser, 2022. "What Does the Circular Household of the Future Look Like? An Expert-Based Exploration," Land, MDPI, vol. 11(7), pages 1-15, July.
    11. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    12. Jan Diek van Mansvelt & Paul C. Struik & Arie Bos & Willem Daub & Diederick Sprangers & Mara van den Berg & Marieke Vingerhoets & Kees Zoeteman, 2021. "Changing Ground: Handling Tensions between Production Ethics and Environmental Ethics of Agricultural Soils," Sustainability, MDPI, vol. 13(23), pages 1-17, December.
    13. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    14. Tadros, Maher J. & Al-Mefleh, Naji K. & Othman, Yahia A. & Al-Assaf, Amani, 2021. "Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Miklós Kázmér & Keyan Fang & Yunchao Zhou & Zoltán Kern, 2024. "Rapid Estimation of Soil Erosion Rate from Exhumed Roots (Xiaolong Mts, China)," Land, MDPI, vol. 13(6), pages 1-14, May.
    16. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    17. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    18. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    19. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    20. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422004127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.