IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v101y2020i3d10.1007_s11069-020-03892-2.html
   My bibliography  Save this article

Optimized multi-output machine learning system for engineering informatics in assessing natural hazards

Author

Listed:
  • Jui-Sheng Chou

    (National Taiwan University of Science and Technology)

  • Dinh-Nhat Truong

    (National Taiwan University of Science and Technology)

  • Yonatan Che

    (National Taiwan University of Science and Technology)

Abstract

This work develops a novel metaheuristic optimization-based least squares support vector regression (LSSVR) model with a multi-output (MO) algorithm for assessing natural hazards. The MO algorithm is more efficient than the single-output algorithm because the relations among outputs can be estimated simultaneously by the proposed prediction model. Furthermore, the hyperparameters in MOLSSVR are optimized using an accelerated particle swarm optimization (APSO) algorithm combined with a self-tuning method to generate the best predictions and the fastest convergence. The APSO algorithm is validated by solving benchmark functions with unimodal and multimodal characteristics. The performance of APSO-MOLSSVR is compared with those of hybrid and single models yielded from standard multi-input single-output algorithms. A graphical user interface was designed as a stand-alone application to provide a user-friendly system for executing advanced data mining techniques. In real-world engineering cases, APSO-MOLSSVR achieved an error rate that was up to 63.55% better than those achieved using prediction models that are proposed in the single-output scheme. The system much more quickly and efficiently identified the optimal parameters and effectively solved multiple-output problems.

Suggested Citation

  • Jui-Sheng Chou & Dinh-Nhat Truong & Yonatan Che, 2020. "Optimized multi-output machine learning system for engineering informatics in assessing natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 727-754, April.
  • Handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03892-2
    DOI: 10.1007/s11069-020-03892-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03892-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03892-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
    2. Ozgur Kisi & Meysam Alizamir & Mohammad Zounemat-Kermani, 2017. "Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 367-381, May.
    3. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    4. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    5. Ivan D. Haigh & Thomas Wahl, 2019. "Advances in extreme value analysis and application to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 819-822, September.
    6. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwangpil Chang & S. Siddarth & Charles B. Weinberg, 1999. "The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects," Marketing Science, INFORMS, vol. 18(2), pages 178-192.
    2. David Revelt and Kenneth Train., 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Economics Working Papers E00-274, University of California at Berkeley.
    3. Jung-Kyu Jung & Jae Young Choi, 2022. "Choice and allocation characteristics of faculty time in Korea: effects of tenure, research performance, and external shock," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2847-2869, May.
    4. Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
    5. Zongguo Zhang & Xianyang Qiu & Xiuzhi Shi & Zhi Yu, 2023. "Chamber roof deformation prediction and analysis of underground mining using experimental design methodologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 757-777, January.
    6. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    7. Alessandro Acquisti & Hal R. Varian, 2005. "Conditioning Prices on Purchase History," Marketing Science, INFORMS, vol. 24(3), pages 367-381, May.
    8. Hazel Bateman & Christine Eckert & Fedor Iskhakov & Jordan Louviere & Stephen Satchell & Susan Thorp, 2017. "Default and naive diversification heuristics in annuity choice," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 32-57, February.
    9. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    10. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    11. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    12. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    13. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    14. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    15. Mohamed Elgharib Gomah & Guichen Li & Naseer Muhammad Khan & Changlun Sun & Jiahui Xu & Ahmed A. Omar & B. G. Mousa & Marzouk Mohamed Aly Abdelhamid & M. M. Zaki, 2022. "Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
    16. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    17. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    18. Yan Lin & Wai Fong Boh, 2020. "How different Are crowdfunders? Examining archetypes of crowdfunders," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(11), pages 1357-1370, November.
    19. Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
    20. von Haefen, Roger H., 2003. "Incorporating observed choice into the construction of welfare measures from random utility models," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 145-165, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03892-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.