IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i2d10.1007_s11069-022-05240-y.html
   My bibliography  Save this article

Comparison between bivariate and trivariate flood frequency analysis using the Archimedean copula functions, a case study of the Karun River in Iran

Author

Listed:
  • Mohamad Haytham Klaho

    (Isfahan University of Technology)

  • Hamid R. Safavi

    (Isfahan University of Technology)

  • Mohammad H. Golmohammadi

    (Isfahan University of Technology)

  • Maamoun Alkntar

    (Isfahan University of Technology)

Abstract

Historically, severe floods have caused great human and financial losses. Therefore, the flood frequency analysis based on the flood multiple variables including flood peak, volume and duration poses more motivation for hydrologists to study. The main goal of this paper is conducting a tri-variate flood frequency analysis through simultaneously processing the three main variables of any flood event. In addition to this analysis, three bi-variate flood frequency analyses are also performed considering the variables pairwise. Meanwhile, the Archimedean copula functions are employed to conduct such analyses, and finally compared based on their performance in estimating the accurate and reliable flood frequencies. Bivariate and trivariate flood frequency analysis and modeling using Archimedean copula functions is focused. For this purpose, the annual flood data over a 55-year historical period recorded at the Dez Dam hydrometric station were used. According to the goodness-of-fit criteria along with the analytical tail dependence results based on the extreme value theory, the Frank function built upon the couple of the flood peak-volume and the couple of the flood peak-duration as well as the Clayton function built upon the flood volume-duration were identified to be the best copula families to be adopted. The trivariate analysis was conducted and the Clayton family was chosen as the best copula function. Thereafter, the common and conditional cumulative probability distribution functions were built and analyzed to determine the periodic "and", "or" and "conditional" bivariate and trivariate flood return periods. The results suggest that the bivariate conditional return period obtained for short-term periods is more reliable than the trivariate conditional return period. Additionally, the trivariate conditional return period calculated for long-term periods is more reliable than the bivariate conditional return period.

Suggested Citation

  • Mohamad Haytham Klaho & Hamid R. Safavi & Mohammad H. Golmohammadi & Maamoun Alkntar, 2022. "Comparison between bivariate and trivariate flood frequency analysis using the Archimedean copula functions, a case study of the Karun River in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1589-1610, June.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05240-y
    DOI: 10.1007/s11069-022-05240-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05240-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05240-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    2. Dunxian She & Jun Xia, 2018. "Copulas-Based Drought Characteristics Analysis and Risk Assessment across the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 547-564, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    2. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    3. Tjøstheim, Dag & Hufthammer, Karl Ove, 2013. "Local Gaussian correlation: A new measure of dependence," Journal of Econometrics, Elsevier, vol. 172(1), pages 33-48.
    4. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    5. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    6. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    7. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    9. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
    10. Chabi-Yo, Fousseni & Ruenzi, Stefan & Weigert, Florian, 2018. "Crash Sensitivity and the Cross Section of Expected Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1059-1100, June.
    11. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    12. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    13. L. Vergni & F. Todisco & F. Mannocchi, 2015. "Analysis of agricultural drought characteristics through a two-dimensional copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2819-2835, June.
    14. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    15. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    16. Michael C. Munnix & Rudi Schafer, 2011. "A Copula Approach on the Dynamics of Statistical Dependencies in the US Stock Market," Papers 1102.1099, arXiv.org, revised Mar 2011.
    17. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).
    18. Yue Peng & Wing Ng, 2012. "Analysing financial contagion and asymmetric market dependence with volatility indices via copulas," Annals of Finance, Springer, vol. 8(1), pages 49-74, February.
    19. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05240-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.