Debris-flow susceptibility assessment in Dongchuan using stacking ensemble learning including multiple heterogeneous learners with RFE for factor optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-023-06099-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shouxiang Wang & Pengfei Dong & Yingjie Tian, 2017. "A Novel Method of Statistical Line Loss Estimation for Distribution Feeders Based on Feeder Cluster and Modified XGBoost," Energies, MDPI, vol. 10(12), pages 1-17, December.
- G. Chevalier & V. Medina & M. Hürlimann & A. Bateman, 2013. "Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 213-238, June.
- Rajesh Kumar Dash & Philips Omowumi Falae & Debi Prasanna Kanungo, 2022. "Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2011-2058, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yunjie Yang & Rui Zhang & Tianyu Wang & Anmengyun Liu & Yi He & Jichao Lv & Xu He & Wenfei Mao & Wei Xiang & Bo Zhang, 2024. "An information quantity and machine learning integrated model for landslide susceptibility mapping in Jiuzhaigou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10185-10217, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Chenjie & Menke, Jan-Hendrik & Dasenbrock, Johannes & Braun, Martin & Haslbeck, Matthias & Schmid, Karl-Heinz, 2019. "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, Elsevier, vol. 256(C).
- Gheorghe Grigoras & Bogdan-Constantin Neagu, 2019. "Smart Meter Data-Based Three-Stage Algorithm to Calculate Power and Energy Losses in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(15), pages 1-27, August.
- Deqiang Cheng & Javed Iqbal & Chunliu Gao, 2023. "Debris Flow Gully Classification and Susceptibility Assessment Model Construction," Land, MDPI, vol. 12(3), pages 1-20, February.
- Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
- Mirosław Kornatka & Anna Gawlak, 2021. "An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators," Energies, MDPI, vol. 14(21), pages 1-12, October.
More about this item
Keywords
Debris-flow; Multiple heterogeneous learners; Recursive feature elimination-random forest; Stacking ensemble learning; Dongchuan;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:3:d:10.1007_s11069-023-06099-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.