IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04652-6.html
   My bibliography  Save this article

Cause and damage analysis of 2010 flood disaster in district Muzaffar Garh, Pakistan

Author

Listed:
  • Shakeel Mahmood

    (GC University Lahore)

  • Asif Sajjad

    (Wuhan University)

  • Atta-ur Rahman

    (University of Peshawar)

Abstract

In this paper, the causes and damages of 2010 flood disaster were analyzed in districts Muzaffar Garh. The study area is one of the severely flood affected districts by floods in the past. A mix research approach is applied to analyse the 2010-flood generating factors and damages in the study area. Primary data were acquired through questionnaires, personal observations and Global Positioning System (GPS). Remote Sensing (RS) Landsat-7 ETM data were obtained from USGS online database for pre- and post-flooding periods to delineate the spatial extent of inundation and estimate different land covers classes with damages. Secondary data regarding Rainfall and river discharge were acquired from concerned Government Departments. Modified Normalized Difference in Water Index (MNDWI) was applied to extract inundation, and supervised image classification algorithm was utilized to classify land cover into different classes. The analysis indicates that the flood was generated by extreme rainfall event in the last week of July, 2010 in the upper catchment areas of River Indus. This generated ever highest discharge in the River Indus. As a consequence, this disastrous flow has breached the left marginal embankment (LME) near Taunsa barrage. Spatially, more than half of the land area was inundated. Moreover, the analysis showed that the inundation incurred total estimated economic loss of about 9.85 million US$. Out of total, the maximum damages of 4.45 million US$ were reported from agriculture sector followed by infrastructures 3.5 million US$. This study will provide an empirical basis for flood disaster management authorities to plan disaster response activity and mitigation strategies to reduce the risk of potential damages. The results can also assist decision makers to evaluate breaching points.

Suggested Citation

  • Shakeel Mahmood & Asif Sajjad & Atta-ur Rahman, 2021. "Cause and damage analysis of 2010 flood disaster in district Muzaffar Garh, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1681-1692, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04652-6
    DOI: 10.1007/s11069-021-04652-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04652-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04652-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    2. S. Jonkman & J. Vrijling & A. Vrouwenvelder, 2008. "Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 353-389, September.
    3. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakeel Mahmood & Razia Rani, 2022. "People-centric geo-spatial exposure and damage assessment of 2014 flood in lower Chenab Basin, upper Indus Plain in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 3053-3069, April.
    2. Asif Sajjad & Jianzhong Lu & Xiaoling Chen & Chikondi Chisenga & Nausheen Mazhar & Basit Nadeem, 2022. "Riverine flood mapping and impact assessment using remote sensing technique: a case study of Chenab flood-2014 in Multan district, Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2207-2226, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wim Kellens & Ruud Zaalberg & Tijs Neutens & Wouter Vanneuville & Philippe De Maeyer, 2011. "An Analysis of the Public Perception of Flood Risk on the Belgian Coast," Risk Analysis, John Wiley & Sons, vol. 31(7), pages 1055-1068, July.
    2. Richard Franklin & Jemma King & Peter Aitken & Peter Leggat, 2014. "“Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1977-1998, September.
    3. Wim Kellens & Tijs Neutens & Pieter Deckers & Johan Reyns & Philippe Maeyer, 2012. "Coastal flood risks and seasonal tourism: analysing the effects of tourism dynamics on casualty calculations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1211-1229, February.
    4. Simon Lloyd & R. Kovats & Zaid Chalabi & Sally Brown & Robert Nicholls, 2016. "Modelling the influences of climate change-associated sea-level rise and socioeconomic development on future storm surge mortality," Climatic Change, Springer, vol. 134(3), pages 441-455, February.
    5. Jonkman, S.N. & Lentz, A. & Vrijling, J.K., 2010. "A general approach for the estimation of loss of life due to natural and technological disasters," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1123-1133.
    6. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    7. George R. Priest & Laura L. Stimely & Nathan J. Wood & Ian P. Madin & Rudie J. Watzig, 2016. "Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1031-1056, January.
    8. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    9. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    10. R. Jelínek & E. Krausmann & M. González & J. Álvarez-Gómez & J. Birkmann & T. Welle, 2012. "Approaches for tsunami risk assessment and application to the city of Cádiz, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 273-293, January.
    11. Mehdi Karbasi & Alireza Shokoohi & Bahram Saghafian, 2018. "Loss of Life Estimation Due to Flash Floods in Residential Areas using a Regional Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4575-4589, November.
    12. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    13. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    14. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    15. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    16. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    17. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    18. Helen Boon, 2014. "Disaster resilience in a flood-impacted rural Australian town," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 683-701, March.
    19. Nathan Wood & Jeff Peters, 2015. "Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1811-1831, January.
    20. Roland Azibo Balgah & Kester Azibo Ngwa & Gertrud Rosa Buchenrieder & Jude Ndzifon Kimengsi, 2023. "Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Geo-Ecological Zones," Land, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04652-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.