A simplified mathematical model for the dam-breach hydrograph for three reservoir geometries following a sudden full dam break
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-020-03979-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paul Kamrath & Markus Disse & Matthias Hammer & Jürgen Köngeter, 2006. "Assessment of Discharge through a Dike Breach and Simulation of Flood Wave Propagation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 63-78, May.
- M. Peng & L. Zhang, 2012. "Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 903-933, October.
- Jian Wang & Dongfang Liang & Jingxin Zhang & Yang Xiao, 2016. "Comparison between shallow water and Boussinesq models for predicting cascading dam-break flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 327-343, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alibek Issakhov & Aliya Borsikbayeva & Assylbek Issakhov, 2022. "Dam-Break Flow on Mobile Bed Through an Idealized City: Numerical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4425-4446, September.
- Hasan Ogulcan Marangoz & Tugce Anilan, 2022. "Two-dimensional modeling of flood wave propagation in residential areas after a dam break with application of diffusive and dynamic wave approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 429-449, January.
- Jūratė Kriaučiūnienė & Diana Šarauskienė, 2024. "Uncertainty Estimation in the Modeling of a Flood Wave Caused by a Dam Failure in a Hydropower System with Pumped Hydro Energy Storage," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
- Hriday Mani Kalita, 2020. "A Numerical Model for 1D Bed Morphology Calculations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4975-4989, December.
- Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
- El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
- Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.
- Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
- Jean-Luc Kok & Malte Grossmann, 2010. "Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 143-166, January.
- Xingbo Zhou & Zuyu Chen & Jianping Zhou & Xinlei Guo & Xiaohu Du & Qiang Zhang, 2020. "A quantitative risk analysis model for cascade reservoirs overtopping: principle and application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 249-277, October.
- Alessandro Pagano & Raffaele Giordano & Ivan Portoghese & Umberto Fratino & Michele Vurro, 2014. "A Bayesian vulnerability assessment tool for drinking water mains under extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2193-2227, December.
- Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
- Benjamin Dewals & Sébastien Erpicum & Sylvain Detrembleur & Pierre Archambeau & Michel Pirotton, 2011. "Failure of dams arranged in series or in complex," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 917-939, March.
- Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Bruno Merz & Jana Friedrich & Markus Disse & Jochen Schwarz & Johann Goldammer & Jochen Wächter, 2006. "Possibilities and Limitations of Interdisciplinary, User-oriented Research: Experiences from the German Research Network Natural Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 3-20, May.
- Khan, Anwar & Min, Jialin & Hassan Shah, Wasi Ul & Li, Qianwen & Sun, Chuanwang, 2024. "Efficacy of CO2 emission reduction strategies by countries pursuing energy efficiency, nuclear power, and renewable electricity," Energy, Elsevier, vol. 300(C).
- Mohammad Amin Hariri-Ardebili & Upmanu Lall, 2021. "Superposed Natural Hazards and Pandemics: Breaking Dams, Floods, and COVID-19," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
- Guanjie He & Junrui Chai & Yuan Qin & Zengguang Xu & Shouyi Li, 2020. "Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2677-2697, July.
- Gamse, Sonja & Zhou, Wan-Huan & Tan, Fang & Yuen, Ka-Veng & Oberguggenberger, Michael, 2018. "Hydrostatic-season-time model updating using Bayesian model class selection," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 40-50.
- Dupuits, E.J.C. & Klerk, W.J. & Schweckendiek, T. & de Bruijn, K.M., 2019. "Impact of including interdependencies between multiple riverine flood defences on the economically optimal flood safety levels," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
More about this item
Keywords
Instantaneous dam break; Peak discharge; Discharge hydrograph; Reservoir shape; A simple analytical solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03979-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.