IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p173-190.html
   My bibliography  Save this article

The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan

Author

Listed:
  • Chi-Feng Chen
  • Chung-Ming Liu

Abstract

The combination of climate change and urbanization is worsening urban flooding problems. Estimating the amount of rainfall that a city can tolerate without flooding is a fundamental task that is difficult to perform, although large amounts of resources are invested in urban flood control. The purpose of this study is to determine the tolerance threshold for stormwater in a city. Based on hydrometeorological characteristics and existing flood control facilities, the urban adaptive water capacity is analyzed to determine the critical rainfall loading. Different critical levels are defined. The low critical point represents the beginning of the water accumulation, while the intermediate and high critical points are defined as flooding with heights of 300 and 600 cm, respectively, in low-lying areas. This study adopts a simple conceptual method to illustrate the critical levels instead of applying complex hydrologic and hydraulic modeling, which require high-resolution spatial data. Three cities and one township in Taiwan are used as urban case studies and to verify the conceptual method. As the capital, Taipei City utilizes the highest flood control engineering technology of our case studies; it is also the site in which the lowest rainfall thresholds cause the accumulation of water to reach the intermediate and high critical points because its small ‘internal water areas’ increase the height of floods rapidly. Conversely, Taichung City has a large internal water area that can disperse accumulating waters without increasing flood height. The estimations of urban storm tolerance thresholds increase the understanding of the limitations of water protection facilities. These estimations may be combined with rainfall forecasts to increase early warning functions and provide a reference point for subsequent planning related to urban flood adaptation strategies. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:173-190
    DOI: 10.1007/s11069-013-0645-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0645-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0645-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
    2. Szu-Ping Cheng & Ru-Yih Wang, 2004. "Analyzing Hazard Potential of Typhoon Damage by Applying Grey Analytic Hierarchy Process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 77-103, September.
    3. Ousmane Seidou & Andrea Ramsay & Ioan Nistor, 2012. "Climate change impacts on extreme floods I: combining imperfect deterministic simulations and non-stationary frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 647-659, March.
    4. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    5. Sheng-Hsueh Yang & Yii-Wen Pan & Jia-Jyun Dong & Keh-Chia Yeh & Jyh-Jong Liao, 2013. "A systematic approach for the assessment of flooding hazard and risk associated with a landslide dam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 41-62, January.
    6. M. Peng & L. Zhang, 2012. "Analysis of human risks due to dam break floods—part 2: application to Tangjiashan landslide dam failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1899-1923, November.
    7. M. Peng & L. Zhang, 2012. "Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 903-933, October.
    8. Albert Chen & Ming-Hsi Hsu & Chen-Jia Huang & Wan-Yu Lien, 2011. "Analysis of the Sanchung inundation during Typhoon Aere, 2004," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 59-79, January.
    9. Russell McKenzie & John Levendis, 2010. "Flood Hazards and Urban Housing Markets: The Effects of Katrina on New Orleans," The Journal of Real Estate Finance and Economics, Springer, vol. 40(1), pages 62-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Pagano & Raffaele Giordano & Ivan Portoghese & Umberto Fratino & Michele Vurro, 2014. "A Bayesian vulnerability assessment tool for drinking water mains under extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2193-2227, December.
    2. Khan, Anwar & Min, Jialin & Hassan Shah, Wasi Ul & Li, Qianwen & Sun, Chuanwang, 2024. "Efficacy of CO2 emission reduction strategies by countries pursuing energy efficiency, nuclear power, and renewable electricity," Energy, Elsevier, vol. 300(C).
    3. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    4. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    5. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    6. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    7. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    8. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    9. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    10. Castells-Quintana, David & del Pilar Lopez-Uribe, Maria & McDermott, Thomas K.J., 2018. "A review of adaptation to climate change through a development economics lens," Working Papers 309605, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    11. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    14. Donadelli, M. & Jüppner, M. & Paradiso, A. & Ghisletti, M., 2020. "Tornado activity, house prices, and stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    15. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    16. Junxue Ma & Jian Chen & Zhijiu Cui & Wendy Zhou & Ruichen Chen & Chengbiao Wang, 2022. "Reconstruction of catastrophic outburst floods of the Diexi ancient landslide-dammed lake in the Upper Minjiang River, Eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1191-1221, June.
    17. James E. Larsen, 2012. "The Impact of a Letter of Map Amendment on Floodplain Property Value," American Journal of Economics and Business Administration, Science Publications, vol. 4(3), pages 172-179, August.
    18. Ortega, Francesc & Taspinar, Süleyman, 2016. "Rising Sea Levels and Sinking Property Values: The Effects of Hurricane Sandy on New York's Housing Market," IZA Discussion Papers 10374, Institute of Labor Economics (IZA).
    19. Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
    20. Ronnie J. Phillips & David Nickerson, 2011. "Underwriting in Property-Casualty Insurance Markets: Regulation, Risk and Volatility," NFI Working Papers 2011-WP-19, Indiana State University, Scott College of Business, Networks Financial Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:173-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.