IDEAS home Printed from https://ideas.repec.org/p/ucb/calbwp/e00-274.html
   My bibliography  Save this paper

Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier

Author

Listed:
  • David Revelt and Kenneth Train.

Abstract

David Revelt and Kenneth Train. JEL#: C25, D12, L94. Keywords: energy suppliers, mixed logit, taste parameters In a discrete choice situation, information about the tastes of each sampled customer is inferred from estimates of the distribution of tastes in the population. First, maximum likelihood procedures are used to estimate the distribution of tastes in the population using the pooled data for all sampled customers. Then, the distribution of tastes of each sampled customer is derived conditional on the observed data for that customer and the estimated population distribution of tastes (accounting for uncertainty in the population estimates.) We apply the method to data on residential customers' choice among energy suppliers in conjoint-type experiments. The estimated distribution of tastes provides practical information that is useful for suppliers in designing their offers. The conditioning for individual customers is found to differentiate customers effectively for marketing purposes and to improve considerably the predictions in new situations. May 2000

Suggested Citation

  • David Revelt and Kenneth Train., 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Economics Working Papers E00-274, University of California at Berkeley.
  • Handle: RePEc:ucb:calbwp:e00-274
    as

    Download full text from publisher

    File URL: http://www.haas.berkeley.edu/groups/iber/wps/econ/E00-274.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Denis Bolduc & Bernard Fortin & Stephen Gordon, 1997. "Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques," International Regional Science Review, , vol. 20(1-2), pages 77-101, April.
    3. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
    4. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    5. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    7. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    8. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    9. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    10. Griffiths, William E., 1971. "Estimation Of Actual Response Coefficients In The Hildreth-Houck Random Coefficient Model," Staff Papers 14275, University of Minnesota, Department of Applied Economics.
    11. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(4), pages 518-552, December.
    12. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    13. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    14. Algers, S. & Bergstrom, P. & Dahlberg, M. & Dillen, J.L., 1998. "Mixed Logit Estimation of the Value of Travel Time," Papers 1998:15, Uppsala - Working Paper Series.
    15. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    16. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    2. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    3. Hu, Wuyang & Adamowicz, Wiktor L. & Veeman, Michele M., 2004. "Decomposing Unobserved Choice Variability In The Presence Of Consumers' Taste Heterogeneity," 2004 Annual meeting, August 1-4, Denver, CO 19954, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    5. Francisco Javier Amador & Rosa Marina González & Juan de Dios Ortúzar, 2004. "Preference heterogeneity and willingness to pay for travel time," Documentos de trabajo conjunto ULL-ULPGC 2004-12, Facultad de Ciencias Económicas de la ULPGC.
    6. Bhat, Chandra & Zhao, Huimin, 2002. "The spatial analysis of activity stop generation," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 557-575, July.
    7. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    8. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    9. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    10. Robert Bartels & Denzil Fiebig & Arthur Soest, 2006. "Consumers and experts: an econometric analysis of the demand for water heaters," Empirical Economics, Springer, vol. 31(2), pages 369-391, June.
    11. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    12. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    13. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    14. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    15. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    16. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    17. repec:rre:publsh:v:38:y:2008:i:3:p:395-415 is not listed on IDEAS
    18. Algers, Staffan & Bergström, Pål & Dahlberg, Matz & Lindqvist Dillén, Johanna, 1998. "Mixed Logit Estimation of the Value of Travel Time," Working Paper Series 1998:15, Uppsala University, Department of Economics.
    19. Xiaodong Gong & Arthur van Soest, 2002. "Family Structure and Female Labor Supply in Mexico City," Journal of Human Resources, University of Wisconsin Press, vol. 37(1), pages 163-191.
    20. Hong, Junhee & Koo, Yoonmo & Jeong, Gicheol & Lee, Jongsu, 2012. "Ex-ante evaluation of profitability and government's subsidy policy on vehicle-to-grid system," Energy Policy, Elsevier, vol. 42(C), pages 95-104.
    21. Borsch-Supan, Axel & Heiss, Florian & Seko, Miki, 2001. "Housing Demand in Germany and Japan," Journal of Housing Economics, Elsevier, vol. 10(3), pages 229-252, September.

    More about this item

    Keywords

    energy suppliers; mixed logit; taste parameters in a discrete choice situation; information about the tastes of each sampled customer is inferred from estimates of the distribution of tastes in the population. first; maximum likelihood procedures are used to estimate the distribution of tastes in the population using the pooled data for all sampled customers. then; the distribution of tastes of each sampled customer is derived conditional on the observed data for that customer and the estimated population distribution of tastes (accounting for uncertainty in the population estimates.) we apply the method to data on residential customers' choice among energy suppliers in conjoint-type experiments. the estimated distribution of tastes provides practical information that is useful for suppliers in designing their offers. the conditioning for individual customers is found to differentiate customers effectively for marketing purposes and to improve considerably the predictions in new situations. may 2000;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucb:calbwp:e00-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.