IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i2d10.1007_s11069-019-03821-y.html
   My bibliography  Save this article

Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness

Author

Listed:
  • Alaa M. Al-Abadi

    (University of Basrah)

  • Noor A. Al-Najar

    (University of Basrah)

Abstract

This study applied two bivariate statistical models (frequency ratio and information value), one multivariate statistical model (logistic regression), and two supervised statistical learning models (boosted regression trees and classification and regression trees) for mapping flood proneness in an arid region of southern Iraq. For this purpose, ten flood causative factors were chosen based on data availability and local conditions along with the spatial extent of the large flood that affected the study area on 13 May 2013. The factors used involved topography-related factors (elevation, slope, curvature, topographic wetness index, and stream power index), lithology, soil, land use/land cover, the average of annual rainfall, and distance to rivers. The multicollinearity test proved that there was no multicollinearity problem among the factors used. Investigating the worth of factors in building the models using information gain ratio showed that the most important factors that play a major role in controlling flood proneness were elevation, followed by annual rainfall average, distance to rivers, land use/land cover, lithology, and soil. The models were employed using the most important factors to get flood proneness maps. The values of flood proneness were categorized into five classes using a quantile classification scheme. For validating the models, area under the receiver operating characteristic curve (AUC) was used. The AUC for prediction data set was 0.793, 0.786, 0.779, 0.754, and 0.753 for classification and regression trees, boosted regression trees, logistic regression, information value, and frequency ratio, respectively. For the best performance model (classification and regression trees), the areas occupied by flood proneness zones were 2735 km2, 2809 km2, 2816 km2, 2732 km2, and 2801 km2, for very low, low, moderate, high, and very high flood proneness zones, respectively. The main conclusion is that the machine learning models are optimal in mapping flood proneness in the study area, followed by the multivariate and bivariate models. Decision makers and hydrologists for improved management of access floodwater and prevention of flood-related damages can adopt the flood proneness maps developed in this study.

Suggested Citation

  • Alaa M. Al-Abadi & Noor A. Al-Najar, 2020. "Comparative assessment of bivariate, multivariate and machine learning models for mapping flood proneness," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 461-491, January.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03821-y
    DOI: 10.1007/s11069-019-03821-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03821-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03821-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    2. Ataollah Shirzadi & Lee Saro & Oh Hyun Joo & Kamran Chapi, 2012. "A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1639-1656, November.
    3. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    2. Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
    3. Ahmed M. Youssef & Ali M. Mahdi & Hamid Reza Pourghasemi, 2023. "Optimal flood susceptibility model based on performance comparisons of LR, EGB, and RF algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1071-1096, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    3. Vangelis Pitidis & Deodato Tapete & Jon Coaffee & Leon Kapetas & João Porto de Albuquerque, 2018. "Understanding the Implementation Challenges of Urban Resilience Policies: Investigating the Influence of Urban Geological Risk in Thessaloniki, Greece," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    4. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    5. Yanrong Liu & Zhongqiu Meng & Lei Zhu & Di Hu & Handong He, 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    6. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    7. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    8. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    9. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    10. Yufeng He & Mingtao Ding & Hao Zheng & Zemin Gao & Tao Huang & Yu Duan & Xingjie Cui & Siyuan Luo, 2023. "Integrating development inhomogeneity into geological disasters risk assessment framework in mountainous areas: a case study in Lushan–Baoxing counties, Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3203-3229, July.
    11. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    12. Rana Muhammad Adnan Ikram & Imran Khan & Hossein Moayedi & Atefeh Ahmadi Dehrashid & Ismail Elkhrachy & Binh Nguyen Le, 2024. "Novel evolutionary-optimized neural network for predicting landslide susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17687-17719, July.
    13. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    14. Yuxin Guo & Zhanya Xu & Shuang Zhu & Xiangang Luo & Yinli Xiao, 2023. "Using distributed root soil moisture data to enhance the performance of rainfall thresholds for landslide warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1167-1192, January.
    15. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    16. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    17. Binh Thai Pham & Indra Prakash & Wei Chen & Hai-Bang Ly & Lanh Si Ho & Ebrahim Omidvar & Van Phong Tran & Dieu Tien Bui, 2019. "A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 11(22), pages 1-30, November.
    18. Qiang Liu & Delong Huang & Aiping Tang & Xiaosheng Han, 2021. "Model performance analysis for landslide susceptibility in cold regions using accuracy rate and fluctuation characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1047-1067, August.
    19. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    20. Ahmad Rajabi & Saeid Shabanlou & Fariborz Yosefvand & Afshin Kiani, 2021. "Exploring the sample size and replications scenarios effect on spatial prediction of flood, using MARS and MaxEnt methods case study: saliantape catchment, Golestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 871-901, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:2:d:10.1007_s11069-019-03821-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.