IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v73y2015i2p201-216.html
   My bibliography  Save this article

Power series mixtures and the ratio plot with applications to zero-truncated count distribution modelling

Author

Listed:
  • Dankmar Böhning

Abstract

The purpose of this note is to contribute some general points on how mixtures of power series distributions relate to their ratios of neighboring probabilities and how the associated graph, the ratio plot, can be used as diagnostic device as suggested in Böhning (J Comput Graph Stat 22:133–155, 2013 ). This work is continued here and extensively used to explore the aptness of the negative-binomial and beta-binomial model as capture-recapture zero-truncated count models. It is concluded that these models are less suitable for capture-recapture modelling as frequently readily assumed. This is mainly due to an inherent boundary problem that is elaborated here and illustrated at hand of some case studies. Copyright Sapienza Università di Roma 2015

Suggested Citation

  • Dankmar Böhning, 2015. "Power series mixtures and the ratio plot with applications to zero-truncated count distribution modelling," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 201-216, August.
  • Handle: RePEc:spr:metron:v:73:y:2015:i:2:p:201-216
    DOI: 10.1007/s40300-015-0071-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40300-015-0071-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40300-015-0071-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    2. Baksh, M. Fazil & Böhning, Dankmar & Lerdsuwansri, Rattana, 2011. "An extension of an over-dispersion test for count data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 466-474, January.
    3. Patricia M. E. Altham, 1978. "Two Generalizations of the Binomial Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(2), pages 162-167, June.
    4. Lovison, G., 1998. "An alternative representation of Altham's multiplicative-binomial distribution," Statistics & Probability Letters, Elsevier, vol. 36(4), pages 415-420, January.
    5. Verena Feirer & Herwig Friedl & Ulrich Hirn, 2013. "Modelling over- and underdispersed frequencies of successful ink transmissions onto paper," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(3), pages 626-643.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Lovison, 2015. "A generalization of the Binomial distribution based on the dependence ratio," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 126-149, May.
    2. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    3. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    4. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    5. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    6. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    7. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    8. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    9. Yu, Chang & Zelterman, Daniel, 2008. "Sums of exchangeable Bernoulli random variables for family and litter frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1636-1649, January.
    10. Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
    11. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    12. Pires, Rubiane M. & Diniz, Carlos A.R., 2012. "Correlated binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2513-2525.
    13. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    14. Molenberghs, Geert & Declerck, Lieven & Aerts, Marc, 1998. "Misspecifying the likelihood for clustered binary data," Computational Statistics & Data Analysis, Elsevier, vol. 26(3), pages 327-349, January.
    15. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    16. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    17. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
    18. Sueli Mingoti, 2003. "A note on the sample size required in sequential tests for the generalized binomial distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 873-879.
    19. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    20. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:73:y:2015:i:2:p:201-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.