IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i1d10.1007_s00184-020-00775-1.html
   My bibliography  Save this article

An empirical likelihood method for quantile regression models with censored data

Author

Listed:
  • Qibing Gao

    (Nanjing Normal University)

  • Xiuqing Zhou

    (Nanjing Normal University)

  • Yanqin Feng

    (Wuhan University)

  • Xiuli Du

    (Nanjing Normal University)

  • XiaoXiao Liu

    (Nanjing Normal University)

Abstract

An estimation for censored quantile regression models, which is based on an inverse-censoring-probability weighting method, is studied in this paper, and asymptotic distribution of the parameter vector estimator is obtained. Based on the parameter estimation and asymptotic distribution of the estimator, an empirical likelihood inference method is proposed for censored quantile regression models and asymptotic property of empirical likelihood ratio is proved. Since the limiting distribution of the empirical likelihood ratio statistic is a mixture of chi-squared distributions, adjustment methods are also proposed to make the statistic converge to standard chi-squared distribution. The weighting scheme used in the parameter estimation is simple and the loss function is continuous and convex, and therefore, compared with empirical likelihood methods for quantile regression models with completely observed data, the methods proposed in this paper will not increase the computational complexity. This makes it especially useful for data with medium or high dimensional covariates. Simulation studies are developed to illustrate the performance of proposed methods.

Suggested Citation

  • Qibing Gao & Xiuqing Zhou & Yanqin Feng & Xiuli Du & XiaoXiao Liu, 2021. "An empirical likelihood method for quantile regression models with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 75-96, January.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:1:d:10.1007_s00184-020-00775-1
    DOI: 10.1007/s00184-020-00775-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00775-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00775-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
    2. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    3. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    4. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    5. Wang, Qi-Hua & Li, Gang, 2002. "Empirical Likelihood Semiparametric Regression Analysis under Random Censorship," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 469-486, November.
    6. Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.
    7. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    8. Zhou, Xiuqing & Wang, Jinde, 2005. "A genetic method of LAD estimation for models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 451-466, March.
    9. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    10. Ying, Zhiliang, 1989. "A note on the asymptotic properties of the product-limit estimator on the whole line," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 311-314, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.
    2. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    3. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    4. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    5. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    6. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    7. Peng, Limin, 2012. "Self-consistent estimation of censored quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 368-379.
    8. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    9. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    10. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    12. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    13. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    14. Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.
    15. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    16. Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.
    17. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    18. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    19. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    20. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:1:d:10.1007_s00184-020-00775-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.