IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v85y2003i2p416-430.html
   My bibliography  Save this article

Empirical likelihood inference for median regression models for censored survival data

Author

Listed:
  • Qin, Gengsheng
  • Tsao, Min

Abstract

Recent advances in median regression model have made it possible to use this model for analyzing a variety of censored survival data. For inference on the model parameter vector, there are now semiparametric procedures based on normal approximation that are valid without strong conditions on the error distribution. However, the accuracy of such procedures can be quite low when the censoring proportion is high. In this paper, we propose an alternative semiparametric procedure based on the empirical likelihood. We define the empirical likelihood ratio for the parameter vector and show that its limiting distribution is a weighted sum of chi-square distributions. Numerical results from a simulation study suggest that the empirical likelihood method is more accurate than the normal approximation based method of Ying et al. (J. Amer. Statist. Assoc. 90 (1995) 178).

Suggested Citation

  • Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
  • Handle: RePEc:eee:jmvana:v:85:y:2003:i:2:p:416-430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00015-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Tze Leung & Ying, Zhiliang, 1992. "Linear rank statistics in regression analysis with censored or truncated data," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 13-45, January.
    2. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    3. Lai, T. L. & Ying, Z. L. & Zheng, Z. K., 1995. "Asymptotic Normality of a Class of Adaptive Statistics with Applications to Synthetic Data Methods for Censored Regression," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 259-279, February.
    4. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    5. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    6. Gianfranco Adimari, 1997. "Empirical Likelihood Type Confidence Intervals Under Random Censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 447-466, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Gengsheng & Zhao, Yichuan, 2007. "Empirical likelihood inference for the mean residual life under random censorship," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 549-557, March.
    2. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    3. Shim, Jooyong & Hwang, Changha, 2009. "Support vector censored quantile regression under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 912-919, February.
    4. Nubyra Ahmed & Sundarraman Subramanian, 2016. "Semiparametric simultaneous confidence bands for the difference of survival functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 504-530, October.
    5. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    6. Yichuan Zhao & Song Yang, 2008. "Empirical likelihood inference for censored median regression with weighted empirical hazard functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 441-457, June.
    7. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    8. Ming Zheng & Wen Yu, 2013. "Empirical likelihood method for multivariate Cox regression," Computational Statistics, Springer, vol. 28(3), pages 1241-1267, June.
    9. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    10. Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.
    11. Sundarraman Subramanian, 2020. "Function-based hypothesis testing in censored two-sample location-scale models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 183-213, January.
    12. Gengsheng Qin & Xiao-Hua Zhou, 2006. "Empirical Likelihood Inference for the Area under the ROC Curve," Biometrics, The International Biometric Society, vol. 62(2), pages 613-622, June.
    13. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    14. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    15. Bravo, Francesco, 2009. "Two-step generalised empirical likelihood inference for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1412-1431, August.
    16. Guo-Liang Fan & Han-Ying Liang & Zhen-Sheng Huang, 2012. "Empirical likelihood for partially time-varying coefficient models with dependent observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 71-84.
    17. César Sánchez-Sellero, 2009. "Comments on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 458-460, November.
    18. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    19. Qibing Gao & Xiuqing Zhou & Yanqin Feng & Xiuli Du & XiaoXiao Liu, 2021. "An empirical likelihood method for quantile regression models with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 75-96, January.
    20. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    21. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    22. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    23. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Gengsheng & Jing, Bing-Yi, 2001. "Censored Partial Linear Models and Empirical Likelihood," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 37-61, July.
    2. Yichuan Zhao & Song Yang, 2008. "Empirical likelihood inference for censored median regression with weighted empirical hazard functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 441-457, June.
    3. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(2), pages 173-205, April.
    4. Andrés Langebaek R. & Diego Vásquez E., 2007. "Determinantes de la actividad innovadora en la industria manufacturera colombiana," Borradores de Economia 433, Banco de la Republica de Colombia.
    5. Brunner, Eric & Sonstelie, Jon, 2003. "School finance reform and voluntary fiscal federalism," Journal of Public Economics, Elsevier, vol. 87(9-10), pages 2157-2185, September.
    6. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.
    7. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    8. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Barton Hughes Hamilton, 1997. "Racial discrimination and professional basketball salaries in the 1990s," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 287-296.
    10. Anil Kumar, 2012. "Nonparametric estimation of the impact of taxes on female labor supply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 415-439, April.
    11. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    12. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    13. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    14. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    15. Gustavsen, Geir Waehler, 2005. "Public Policies and the Demand for Carbonated Soft Drinks: A Censored Quantile Regression Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24737, European Association of Agricultural Economists.
    16. Golan, Amos & Judge, George & Perloff, Jeffrey, 1997. "Estimation and inference with censored and ordered multinomial response data," Journal of Econometrics, Elsevier, vol. 79(1), pages 23-51, July.
    17. William M. Rodgers, 2006. "Male White‐Black Wage Gaps, 1979‐1994: A Distributional Analysis," Southern Economic Journal, John Wiley & Sons, vol. 72(4), pages 773-793, April.
    18. Liu, Yang & Jiang, Zhigao & Guo, Bowei, 2022. "Assessing China’s provincial electricity spot market pilot operations: Lessons from Guangdong province," Energy Policy, Elsevier, vol. 164(C).
    19. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    20. Zhou, Xiuqing & Wang, Jinde, 2005. "A genetic method of LAD estimation for models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 451-466, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:2:p:416-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.