IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i1p240-251.html
   My bibliography  Save this article

Empirical likelihood for median regression model with designed censoring variables

Author

Listed:
  • Zhong, Pingshou
  • Cui, Hengjian

Abstract

We propose a new and simple estimating equation for the parameters in median regression models with designed censoring variables, and then apply the empirical log likelihood ratio statistic to construct confidence region for the parameters. The empirical log likelihood ratio statistic is shown to have a standard chi-square distribution, which makes this method easy to implement. At the same time, another empirical log likelihood ratio statistic is proposed based on an existing estimating equation and the limiting distribution of the empirical likelihood ratio statistic is shown to be a sum of weighted chi-square distributions. We compare the performance of the empirical likelihood confidence region based on the new estimating equation, with that based on the existing estimating equation and a normal approximation method by simulation studies.

Suggested Citation

  • Zhong, Pingshou & Cui, Hengjian, 2010. "Empirical likelihood for median regression model with designed censoring variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 240-251, January.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:1:p:240-251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00132-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
    3. Cui, Hengjian & Chen, Song Xi, 2003. "Empirical likelihood confidence region for parameter in the errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 101-115, January.
    4. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    5. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    6. Zhou, Xiuqing & Wang, Jinde, 2005. "A genetic method of LAD estimation for models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 451-466, March.
    7. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    8. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.
    2. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    3. Qibing Gao & Xiuqing Zhou & Yanqin Feng & Xiuli Du & XiaoXiao Liu, 2021. "An empirical likelihood method for quantile regression models with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 75-96, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    2. Aurora Galego & João Pereira, 2010. "Evidence On Gender Wage Discrimination In Portugal: Parametric And Semi‐Parametric Approaches," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 56(4), pages 651-666, December.
    3. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    5. Kohei Enami & John Mullahy, 2009. "Tobit at fifty: a brief history of Tobin's remarkable estimator, of related empirical methods, and of limited dependent variable econometrics in health economics," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 619-628, June.
    6. Aguirregabiria, Victor, 2009. "Some Notes on Sample Selection Models," MPRA Paper 15974, University Library of Munich, Germany.
    7. Qibing Gao & Xiuqing Zhou & Yanqin Feng & Xiuli Du & XiaoXiao Liu, 2021. "An empirical likelihood method for quantile regression models with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 75-96, January.
    8. Song, Weixing & Yao, Weixin, 2011. "A lack-of-fit test in Tobit errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1792-1801.
    9. Koul, Hira L. & Song, Weixing & Liu, Shan, 2014. "Model checking in Tobit regression via nonparametric smoothing," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 36-49.
    10. Honore, Bo E. & Kyriazidou, Ekaterini & Udry, Christopher, 1997. "Estimation of Type 3 Tobit models using symmetric trimming and pairwise comparisons," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 107-128.
    11. Kohei Enami & John Mullahy, 2008. "Tobit at Fifty: A Brief History of Tobin's Remarkable Estimator, of Related Empirical Methods, and of Limited Dependent Variable Econometrics in Health Economics," NBER Working Papers 14512, National Bureau of Economic Research, Inc.
    12. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    13. Spermann, Alexander & Strotmann, Harald, 2005. "The Targeted Negative Income Tax (TNIT) in Germany: Evidence from a Quasi Experiment," ZEW Discussion Papers 05-68, ZEW - Leibniz Centre for European Economic Research.
    14. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    15. Wang, Lan, 2007. "A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1034-1042, June.
    16. Donald, Stephen G., 1995. "Two-step estimation of heteroskedastic sample selection models," Journal of Econometrics, Elsevier, vol. 65(2), pages 347-380, February.
    17. Song, Weixing & Zhang, Yi, 2012. "Empirical L2-distance lack-of-fit tests for Tobit regression models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 380-396.
    18. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    19. Hans A. Holter & Dirk Krueger & Serhiy Stepanchuk, 2019. "How do tax progressivity and household heterogeneity affect Laffer curves?," Quantitative Economics, Econometric Society, vol. 10(4), pages 1317-1356, November.
    20. Renuka Sane & Susan Thomas, 2020. "From Participation To Repurchase: Low Income Households And Micro‐insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(3), pages 783-814, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:1:p:240-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.