IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i4d10.1007_s00184-018-0692-x.html
   My bibliography  Save this article

Mean mixtures of normal distributions: properties, inference and application

Author

Listed:
  • Hossein Negarestani

    (Shahid Bahonar University of Kerman)

  • Ahad Jamalizadeh

    (Shahid Bahonar University of Kerman)

  • Sobhan Shafiei

    (Shahid Bahonar University of Kerman)

  • Narayanaswamy Balakrishnan

    (McMaster University)

Abstract

The skew normal (SN) distribution of Azzalini (Scand J Stat 12:171–178, 1985) is one of the widely used probability distributions for modelling skewed data. In this article, we introduce a general class of skewed distributions based on mean mixtures of normal distributions, which includes the SN distribution as a special case. Some properties of this new class, such as expressions for mean, variance, skewness and kurtosis coefficients and characteristic function, are derived. Also, estimates of the model parameters are first obtained by the method of moments. Two special cases of this new class are studied in detail. It is shown that the range of skewness and kurtosis coefficients for the special cases is wider than that of the SN distribution, and in addition, unlike the SN distribution, one of these models is an infinitely divisible distribution. For carrying out the maximum likelihood (ML) estimation, an ECM algorithm is developed. This algorithm is analytically simple because closed-form expressions of conditional expectations in the E-step as well as the updating estimators in the CM-step are in explicit form. The observed information matrix is provided for approximating the asymptotic covariance matrix of the ML estimators of the parameters. The usefulness of the proposed distribution is illustrated through simulated as well as two real data sets. Next, a new extension of regression models is constructed by assuming the proposed distributions for the error term. Finally, a multivariate version of the proposed model is discussed.

Suggested Citation

  • Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:4:d:10.1007_s00184-018-0692-x
    DOI: 10.1007/s00184-018-0692-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0692-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0692-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    2. Nadarajah, Saralees & Kotz, Samuel, 2003. "Skewed distributions generated by the normal kernel," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 269-277, November.
    3. Behboodian, J. & Jamalizadeh, A. & Balakrishnan, N., 2006. "A new class of skew-Cauchy distributions," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1488-1493, August.
    4. Vilca, Filidor & Santana, Lucia & Leiva, Víctor & Balakrishnan, N., 2011. "Estimation of extreme percentiles in Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1665-1678, April.
    5. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    6. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    7. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    8. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    9. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    10. Pavel Krupskii & Raphaël Huser & Marc G. Genton, 2018. "Factor Copula Models for Replicated Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 467-479, January.
    11. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    12. Domínguez-Molina, J. Armando & Rocha-Arteaga, Alfonso, 2007. "On the infinite divisibility of some skewed symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 644-648, March.
    13. Kozubowski, Tomasz J. & Nolan, John P., 2008. "Infinite divisibility of skew Gaussian and Laplace laws," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 654-660, April.
    14. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
    15. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2021. "A formulation for continuous mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Nicolae Tarbă & Mihai-Lucian Voncilă & Costin-Anton Boiangiu, 2022. "On Generalizing Sarle’s Bimodality Coefficient as a Path towards a Newly Composite Bimodality Coefficient," Mathematics, MDPI, vol. 10(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    2. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
    3. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    4. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    5. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    7. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    8. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    9. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    10. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    11. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    12. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    13. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    14. Thomas J. DiCiccio & Anna Clara Monti, 2018. "Testing for sub-models of the skew t-distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 25-44, March.
    15. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    16. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    17. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    18. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    19. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    20. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:4:d:10.1007_s00184-018-0692-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.