IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v27y2018i1d10.1007_s10260-017-0387-x.html
   My bibliography  Save this article

Testing for sub-models of the skew t-distribution

Author

Listed:
  • Thomas J. DiCiccio

    (Cornell University)

  • Anna Clara Monti

    (University of Sannio)

Abstract

The skew t-distribution includes both the skew normal and the normal distributions as special cases. Inference for the skew t-model becomes problematic in these cases because the expected information matrix is singular and the parameter corresponding to the degrees of freedom takes a value at the boundary of its parameter space. In particular, the distributions of the likelihood ratio statistics for testing the null hypotheses of skew normality and normality are not asymptotically $$\chi ^2$$ χ 2 . The asymptotic distributions of the likelihood ratio statistics are considered by applying the results of Self and Liang (J Am Stat Assoc 82:605–610, 1987) for boundary-parameter inference in terms of reparameterizations designed to remove the singularity of the information matrix. The Self–Liang asymptotic distributions are mixtures, and it is shown that their accuracy can be improved substantially by correcting the mixing probabilities. Furthermore, although the asymptotic distributions are non-standard, versions of Bartlett correction are developed that afford additional accuracy. Bootstrap procedures for estimating the mixing probabilities and the Bartlett adjustment factors are shown to produce excellent approximations, even for small sample sizes.

Suggested Citation

  • Thomas J. DiCiccio & Anna Clara Monti, 2018. "Testing for sub-models of the skew t-distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 25-44, March.
  • Handle: RePEc:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0387-x
    DOI: 10.1007/s10260-017-0387-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0387-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0387-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    5. Christophe Ley & Davy Paindaveine, 2010. "On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 235-250.
    6. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    7. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    8. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2008. "The centred parametrization for the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1362-1382, August.
    9. Monica Chiogna, 2005. "A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(3), pages 331-341, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    2. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    3. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    4. Ley, Christophe, 2023. "When the score function is the identity function - A tale of characterizations of the normal distribution," Econometrics and Statistics, Elsevier, vol. 26(C), pages 153-160.
    5. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    6. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    7. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Christophe Ley & Davy Paindaveine, 2010. "On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 235-250.
    9. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    10. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    11. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    12. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    13. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    14. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    15. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    16. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    17. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    18. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    19. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    20. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0387-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.