IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i1d10.1007_s13571-018-0162-5.html
   My bibliography  Save this article

A Marginalized Overdispersed Location Scale Model for Clustered Ordinal Data

Author

Listed:
  • Nasim Vahabi

    (University of Florida, Florida)

  • Anoshirvan Kazemnejad

    (Tarbiat Modares University)

  • Somnath Datta

    (University of Florida, Florida)

Abstract

Overdispersion and intra cluster correlation are two important issues in clustered categorical/ordinal data and failure to account for them can result in misleading inferences. Generalized estimating equations and mixed effects models are two common frameworks for analyzing clustered data which are recently combined and extended to the marginalized random effects model. The location scale models are a different extension of the mixed effects models that furthermore allow the variance to vary as a function of covariates. In this paper, we extend a marginalized location scale model for longitudinal ordinal responses by allowing a log-linear model for variance components that facilitates both population-averaged and subject-specific interpretations. We then extend the marginalized location scale model by incorporating an additional random term into the model to handle the overdispersion aspect of the data. We conduct extensive simulation studies to investigate the statistical properties of the maximum likelihood estimators of the model parameters. We illustrate this methodology using a dataset on a children’s growth failure.

Suggested Citation

  • Nasim Vahabi & Anoshirvan Kazemnejad & Somnath Datta, 2018. "A Marginalized Overdispersed Location Scale Model for Clustered Ordinal Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 103-134, December.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0162-5
    DOI: 10.1007/s13571-018-0162-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0162-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0162-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyoyoung Choo-Wosoba & Somnath Datta, 2018. "Analyzing clustered count data with a cluster-specific random effect zero-inflated Conway–Maxwell–Poisson distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 799-814, April.
    2. Kong, Maiying & Xu, Sheng & Levy, Steven M. & Datta, Somnath, 2015. "GEE type inference for clustered zero-inflated negative binomial regression with application to dental caries," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 54-66.
    3. Tutz, Gerhard & Hennevogl, Wolfgang, 1996. "Random effects in ordinal regression models," Computational Statistics & Data Analysis, Elsevier, vol. 22(5), pages 537-557, September.
    4. N. E. Breslow, 1984. "Extra‐Poisson Variation in Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 38-44, March.
    5. Anna N. Angelos Tosteson & Colin B. Begg, 1988. "A General Regression Methodology for ROC Curve Estimation," Medical Decision Making, , vol. 8(3), pages 204-215, August.
    6. Hyoyoung Choo-Wosoba & Steven M. Levy & Somnath Datta, 2016. "Marginal regression models for clustered count data based on zero-inflated Conway–Maxwell–Poisson distribution with applications," Biometrics, The International Biometric Society, vol. 72(2), pages 606-618, June.
    7. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    8. Bercedis Peterson & Frank E. Harrell, 1990. "Partial Proportional Odds Models for Ordinal Response Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 205-217, June.
    9. Emmanuel Lesaffre & Bart Spiessens, 2001. "On the effect of the number of quadrature points in a logistic random effects model: an example," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 325-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    2. Jeonghwan Kim & Woojoo Lee, 2019. "On testing the hidden heterogeneity in negative binomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 457-470, May.
    3. Bach-Mortensen, Anders Malthe & Goodair, Benjamin & Barlow, Jane, 2022. "Outsourcing and children's social care: A longitudinal analysis of inspection outcomes among English children's homes and local authorities," Social Science & Medicine, Elsevier, vol. 313(C).
    4. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    5. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    6. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    7. D'Alberto, R. & Targetti, S. & Schaller, L. & Bartolini, F. & Eichhorn, T. & Haltia, E. & Harmanny, K. & Le Gloux, F. & Nikolov, D. & Runge, T. & Vergamini, D. & Viaggi, D., 2024. "A European perspective on acceptability of innovative agri-environment-climate contract solutions," Land Use Policy, Elsevier, vol. 141(C).
    8. Maria Iannario, 2015. "Detecting latent components in ordinal data with overdispersion by means of a mixture distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 977-987, May.
    9. Tomasz Lenartowicz & Henryk Bujak & Marcin Przystalski & Inna Mashevska & Kamila Nowosad & Krzysztof Jończyk & Beata Feledyn-Szewczyk, 2024. "Assessment of Resistance of Barley Varieties to Diseases in Polish Organic Field Trials," Agriculture, MDPI, vol. 14(5), pages 1-11, May.
    10. William Magee, 2023. "Earnings, Intersectional Earnings Inequality, Disappointment in One’s Life Achievements and Life (Dis)satisfaction," Journal of Happiness Studies, Springer, vol. 24(1), pages 373-396, January.
    11. Paul S. Albert, 2007. "Random Effects Modeling Approaches for Estimating ROC Curves from Repeated Ordinal Tests without a Gold Standard," Biometrics, The International Biometric Society, vol. 63(2), pages 593-602, June.
    12. Tony Vangeneugden & Geert Molenberghs & Geert Verbeke & Clarice G.B. Dem�trio, 2011. "Marginal correlation from an extended random-effects model for repeated and overdispersed counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 215-232, September.
    13. Hanna Dudek & Joanna Landmesser, 2012. "Income satisfaction and relative deprivation," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 321-334, June.
    14. Altaf H Khan, 2019. "An Application of Sinc Function based Quadrature Method in Statistical Models," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(4), pages 91-96, May.
    15. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    16. Bachmann, Kremena & Meyer, Julia & Krauss, Annette, 2024. "Investment motives and performance expectations of impact investors," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    17. Ángela González Arbeláez, 2010. "Determinantes del riesgo del crédito comercial en Colombia," Vniversitas Económica 8215, Universidad Javeriana - Bogotá.
    18. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    19. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    20. Jin, Hua & Lu, Ying, 2009. "The ROC region of a regression tree," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 936-942, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0162-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.