Imputation based statistical inference for partially linear quantile regression models with missing responses
Author
Abstract
Suggested Citation
DOI: 10.1007/s00184-016-0586-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
- Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
- Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
- Xue, Liugen & Zhu, Lixing, 2007. "Empirical Likelihood for a Varying Coefficient Model With Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 642-654, June.
- Yiguo Sun, 2005. "Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 105-127, May.
- Yan, Li & Chen, Xia, 2014. "Empirical likelihood for partly linear models with errors in all variables," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 275-288.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xue, Liugen, 2009. "Empirical likelihood for linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1353-1366, August.
- Chen, Songnian & Khan, Shakeeb, 2001. "Semiparametric Estimation Of A Partially Linear Censored Regression Model," Econometric Theory, Cambridge University Press, vol. 17(3), pages 567-590, June.
- Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
- Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
- Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuanghua Luo & Yuxin Yan & Cheng-yi Zhang, 2024. "Two-Stage Estimation of Partially Linear Varying Coefficient Quantile Regression Model with Missing Data," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
- Chang-Sheng Liu & Han-Ying Liang, 2023. "Bayesian empirical likelihood of quantile regression with missing observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 285-313, April.
- Peixin Zhao & Xiaoshuang Zhou, 2018. "Robust empirical likelihood for partially linear models via weighted composite quantile regression," Computational Statistics, Springer, vol. 33(2), pages 659-674, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaoshuang Zhou & Peixin Zhao & Yujie Gai, 2022. "Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 705-722, December.
- Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.
- Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
- Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
- Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
- Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
- Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
- Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
- Yiguo Sun & Thanasis Stengos, 2008.
"The absolute health income hypothesis revisited: a semiparametric quantile regression approach,"
Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
- Thanasis Stengos & Yiguo Sun, 2005. "The Absolute Health Income Hypothesis Revisited : A Semiparametric Quantile Regression Approach," University of Cyprus Working Papers in Economics 7-2005, University of Cyprus Department of Economics.
- Yiguo Sun & Thanasis Stengos, 2007. "The absolute health income hypothesis revisited: A Semiparametric Quantile Regression Approach," Working Paper series 23_07, Rimini Centre for Economic Analysis.
- Thanasis Stengos & Yiguo Sun, 2006. "The absolute health income hypothesis revisited: A Semiparametric Quantile Regression Approach," Working Papers 0606, University of Guelph, Department of Economics and Finance.
- Lee, Sokbae, 2007.
"Endogeneity in quantile regression models: A control function approach,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers 08/04, Institute for Fiscal Studies.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee, 2004. "Endogeneity in Quantile Regression Models: A Control Function Approach," Econometric Society 2004 North American Summer Meetings 521, Econometric Society.
- Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
- Sun, Yiguo, 2006.
"A Consistent Nonparametric Equality Test Of Conditional Quantile Functions,"
Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
- Sun, Y., 2003. "A Consistent Nonparametric Equality Test of Conditional Quantile Functions," Working Papers 2003-10, University of Guelph, Department of Economics and Finance.
- Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
- Peixin Zhao & Xiaoshuang Zhou, 2018. "Robust empirical likelihood for partially linear models via weighted composite quantile regression," Computational Statistics, Springer, vol. 33(2), pages 659-674, June.
- Yan-Ting Xiao & Fu-Xiao Li, 2020. "Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables," Computational Statistics, Springer, vol. 35(4), pages 1637-1658, December.
- Qu, Zhongjun & Yoon, Jungmo, 2015.
"Nonparametric estimation and inference on conditional quantile processes,"
Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
- Zhongjun Qu & Jungmo Yoon, 2011. "Nonparametric Estimation and Inference on Conditional Quantile Processes," Boston University - Department of Economics - Working Papers Series WP2011-059, Boston University - Department of Economics.
- Sun, Y., 2003. "Square Root N - Consistent Semiparametric Estimation of Partially Linear Quantile Regression Models," Working Papers 2003-11, University of Guelph, Department of Economics and Finance.
- Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).
- Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
More about this item
Keywords
Quantile regression; Partially linear model; Empirical likelihood; Missing data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:8:d:10.1007_s00184-016-0586-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.