IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i2d10.1007_s00180-018-0793-z.html
   My bibliography  Save this article

Robust empirical likelihood for partially linear models via weighted composite quantile regression

Author

Listed:
  • Peixin Zhao

    (Chongqing Technology and Business University)

  • Xiaoshuang Zhou

    (Dezhou University)

Abstract

In this paper, we investigate robust empirical likelihood inferences for partially linear models. Based on weighted composite quantile regression and QR decomposition technology, we propose a new estimation method for the parametric components. Under some regularity conditions, we prove that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the parametric components are constructed. The resulting estimators for parametric components are not affected by the nonparametric components, and then it is more robust, and is easy for application in practice. Some simulations analysis and a real data application are conducted for further illustrating the performance of the proposed method.

Suggested Citation

  • Peixin Zhao & Xiaoshuang Zhou, 2018. "Robust empirical likelihood for partially linear models via weighted composite quantile regression," Computational Statistics, Springer, vol. 33(2), pages 659-674, June.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-018-0793-z
    DOI: 10.1007/s00180-018-0793-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0793-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0793-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
    2. Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
    3. Yan, Li & Chen, Xia, 2014. "Empirical likelihood for partly linear models with errors in all variables," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 275-288.
    4. Xue, Liugen, 2009. "Empirical likelihood for linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1353-1366, August.
    5. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    6. Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
    7. Jiang, Xuejun & Li, Jingzhi & Xia, Tian & Yan, Wanfeng, 2016. "Robust and efficient estimation with weighted composite quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 413-423.
    8. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
    9. Jiancheng Jiang & Xuejun Jiang & Xinyuan Song, 2014. "Weighted composite quantile regression estimation of DTARCH models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 1-23, February.
    10. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    11. Peixin Zhao & Xinrong Tang, 2016. "Imputation based statistical inference for partially linear quantile regression models with missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 991-1009, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoshuang Zhou & Peixin Zhao & Yujie Gai, 2022. "Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 705-722, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhimeng Sun & Zhi Su & Jingyi Ma, 2014. "Focused vector information criterion model selection and model averaging regression with missing response," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 415-432, April.
    2. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    3. Zhen Yu & Keming Yu & Wolfgang K. Härdle & Xueliang Zhang & Kai Wang & Maozai Tian, 2022. "Bayesian spatio‐temporal modeling for the inpatient hospital costs of alcohol‐related disorders," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 644-667, December.
    4. Peixin Zhao & Xinrong Tang, 2016. "Imputation based statistical inference for partially linear quantile regression models with missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 991-1009, November.
    5. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    6. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    7. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    9. Jiang, Jiancheng & Jiang, Xuejun & Li, Jingzhi & Liu, Yi & Yan, Wanfeng, 2017. "Spatial quantile estimation of multivariate threshold time series models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 772-781.
    10. Peixin Zhao & Liugen Xue, 2012. "Variable selection in semiparametric regression analysis for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 213-231, February.
    11. Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
    12. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    13. Qian, Lianfen & Wang, Suojin, 2017. "Subject-wise empirical likelihood inference in partial linear models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 77-87.
    14. Jiang, Rong & Yu, Keming, 2020. "Single-index composite quantile regression for massive data," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    15. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    16. Shuanghua Luo & Yuxin Yan & Cheng-yi Zhang, 2024. "Two-Stage Estimation of Partially Linear Varying Coefficient Quantile Regression Model with Missing Data," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    17. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    18. Rong Jiang & Mengxian Sun, 2022. "Single-index composite quantile regression for ultra-high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 443-460, June.
    19. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    20. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-018-0793-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.