IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i4p921-937.html
   My bibliography  Save this article

Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data

Author

Listed:
  • Liugen Xue
  • Lixing Zhu

Abstract

A semiparametric regression model for longitudinal data is considered. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence regions and intervals. It is proved that the maximum empirical likelihood estimator of the regression coefficients achieves asymptotic efficiency and the estimator of the baseline function attains asymptotic normality when a bias correction is made. Two calibrated empirical likelihood approaches to inference for the baseline function are developed. We propose a groupwise empirical likelihood procedure to handle the inter-series dependence for the longitudinal semiparametric regression model, and employ bias correction to construct the empirical likelihood ratio functions for the parameters of interest. This leads us to prove a nonparametric version of Wilks' theorem. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. A simulation compares the empirical likelihood and normal-based methods in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. Copyright 2007, Oxford University Press.

Suggested Citation

  • Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:4:p:921-937
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm066
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:4:p:921-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.