IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v98y2021icp147-152.html
   My bibliography  Save this article

Sensitivity analysis and tail variability for the Wang’s actuarial index

Author

Listed:
  • Psarrakos, Georgios
  • Vliora, Polyxeni

Abstract

The ranking of insurance risks with respect to their right tail is a challenging problem. In this paper, we extend the actuarial index introduced by Wang (1998) and propose its sensitivity index based on Leser’s perturbation analysis on a proportional hazards model. We use tail variability measures by conditioning the risk for values greater than the Value-at-Risk (VaR), and we study in detail how the VaR affects the actuarial and the sensitivity index. We provide characterization results for Pareto and exponential distributions, two cases where the actuarial and its sensitivity index are independent from VaR. We also obtain monotonicity results and bounds for them. The results are illustrated by numerical examples.

Suggested Citation

  • Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
  • Handle: RePEc:eee:insuma:v:98:y:2021:i:c:p:147-152
    DOI: 10.1016/j.insmatheco.2021.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721000366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    2. Wei, Wang & Yatracos, Yannis, 2004. "A stop-loss risk index," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 241-250, April.
    3. Landsman, Zinoviy & Valdez, Emiliano A., 2005. "Tail Conditional Expectations for Exponential Dispersion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 189-209, May.
    4. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    5. Shaun Wang, 1998. "An Actuarial Index of the Right-Tail Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(2), pages 88-101.
    6. van Heerwaarden, A. E. & Kaas, R., 1992. "The Dutch premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 11(2), pages 129-133, August.
    7. Haberman, Steven & Khalaf-Allah, Marwa & Verrall, Richard, 2011. "Entropy, longevity and the cost of annuities," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 197-204, March.
    8. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    10. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    11. Sordo, Miguel A. & Castaño-Martínez, Antonia & Pigueiras, Gema, 2016. "A family of premium principles based on mixtures of TVaRs," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 397-405.
    12. Finkelstein, Maxim, 2006. "On relative ordering of mean residual lifetime functions," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 939-944, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    2. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
    3. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    4. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    5. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    6. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    7. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    8. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    9. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    10. Bruce L. Jones & Ricardas Zitikis, 2005. "Testing for the order of risk measures: an application of L-statistics in actuarial science," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 193-211.
    11. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
    12. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    13. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    14. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    15. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    16. Berkhouch, Mohammed & Lakhnati, Ghizlane, 2017. "Extended Gini-type measures of risk and variability," MPRA Paper 80329, University Library of Munich, Germany.
    17. Mohammed Berkhouch & Ghizlane Lakhnati & Marcelo Brutti Righi, 2018. "Extended Gini-Type Measures of Risk and Variability," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 295-314, May.
    18. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    19. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    20. Laurent Gardes & Stéphane Girard, 2021. "On the estimation of the variability in the distribution tail," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 884-907, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:98:y:2021:i:c:p:147-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.