IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v78y2015i4p485-495.html
   My bibliography  Save this article

Trimmed and winsorized semiparametric estimator for left-truncated and right-censored regression models

Author

Listed:
  • Myoung-jae Lee
  • Maria Karlsson

Abstract

For a linear regression model subject to left-truncation and right-censoring where the truncation and censoring points are known constants (or always observed if random), Karlsson and Laitila (Stat Probab Lett 78:2567–2571, 2008 ) proposed a semiparametric estimator which deals with left-truncation by trimming and right-censoring by ‘winsorizing’. The estimator was motivated by a zero moment condition where a transformed error term appears with trimmed and winsorized tails. This paper takes the semiparametric estimator further by deriving the asymptotic distribution that was not shown in Karlsson and Laitila (Stat Probab Lett 78:2567–2571, 2008 ) and discusses its implementation aspects in practice, albeit brief. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Myoung-jae Lee & Maria Karlsson, 2015. "Trimmed and winsorized semiparametric estimator for left-truncated and right-censored regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 485-495, May.
  • Handle: RePEc:spr:metrik:v:78:y:2015:i:4:p:485-495
    DOI: 10.1007/s00184-014-0513-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-014-0513-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-014-0513-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(3), pages 295-317, September.
    2. Newey, Whitney K., 2001. "Conditional Moment Restrictions In Censored And Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 17(5), pages 863-888, October.
    3. Karlsson, Maria & Laitila, Thomas, 2008. "A semiparametric regression estimator under left truncation and right censoring," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2567-2571, November.
    4. Lee, Myoung-jae, 1993. "Quadratic mode regression," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 1-19.
    5. Lee, Myoung-Jae, 1992. "Winsorized Mean Estimator for Censored Regression," Econometric Theory, Cambridge University Press, vol. 8(3), pages 368-382, September.
    6. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    7. Pao-sheng Shen, 2009. "A class of rank-based test for left-truncated and right-censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 461-476, June.
    8. Maria Karlsson, 2006. "Estimators of Regression Parameters for Truncated and Censored Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(3), pages 329-341, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlsson, Maria & Laitila, Thomas, 2008. "A semiparametric regression estimator under left truncation and right censoring," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2567-2571, November.
    2. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    3. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    4. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    5. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    6. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    7. Golan, Amos & Judge, George & Perloff, Jeffrey, 1997. "Estimation and inference with censored and ordered multinomial response data," Journal of Econometrics, Elsevier, vol. 79(1), pages 23-51, July.
    8. Lee, M-J & Kim, Y-S, 2011. "Effects of Informal Family Care on Formal Health Care: Zero-Inflated Endogenous Count for Censored Response," Health, Econometrics and Data Group (HEDG) Working Papers 11/10, HEDG, c/o Department of Economics, University of York.
    9. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    10. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    11. Chen, Songnian & Zhou, Xianbo, 2012. "Semiparametric estimation of a truncated regression model," Journal of Econometrics, Elsevier, vol. 167(2), pages 297-304.
    12. Jin-Jian Hsieh & Cheng-Chih Hsieh, 2023. "Quantile Regression Based on the Weighted Approach with Dependent Truncated Data," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    13. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    14. Yijian Huang & Limin Peng, 2009. "Accelerated Recurrence Time Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 636-648, December.
    15. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    16. Yiguo Sun, 2005. "Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 105-127, May.
    17. Čížek, Pavel, 2012. "Semiparametric robust estimation of truncated and censored regression models," Journal of Econometrics, Elsevier, vol. 168(2), pages 347-366.
    18. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    19. Myoung‐jae Lee & Young‐sook Kim, 2012. "Zero‐Inflated Endogenous Count In Censored Model: Effects Of Informal Family Care On Formal Health Care," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1119-1133, September.
    20. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:78:y:2015:i:4:p:485-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.