Simple alternatives for Box–Cox transformations
Author
Abstract
Suggested Citation
DOI: 10.1007/s00184-013-0438-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Zhenlin, 2006. "A modified family of power transformations," Economics Letters, Elsevier, vol. 92(1), pages 14-19, July.
- P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:cep:stiecm:/2014/572 is not listed on IDEAS
- Hassan Doosti & Peter Hall, 2016. "Making a non-parametric density estimator more attractive, and more accurate, by data perturbation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 445-462, March.
- Bravo, Francesco & Crudu, Federico, 2012.
"Efficient bootstrap with weakly dependent processes,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
- Francesco Bravo & Federico Crudu, 2012. "Efficient bootstrap with weakly dependent processes," Discussion Papers 12/08, Department of Economics, University of York.
- Lorenzo Camponovo & Taisuke Otsu, 2015.
"Robustness of Bootstrap in Instrumental Variable Regression,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
- Lorenzo Camponovo & Taisuke Otsu, 2011. "Robustness of Bootstrap in Instrumental Variable Regression," Cowles Foundation Discussion Papers 1796, Cowles Foundation for Research in Economics, Yale University.
- Camponovo, Lorenzo & Otsu, Taisuke, 2014. "Robustness of bootstrap in instrumental variable regression," LSE Research Online Documents on Economics 58185, London School of Economics and Political Science, LSE Library.
- Lorenzo Camponovo & Taisuke Otsu, 2014. "Robustness of bootstrap in instrumental variable regression," STICERD - Econometrics Paper Series 572, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Camponovo, Lorenzo & Otsu, Taisuke, 2015. "Robustness of bootstrap in instrumental variable regression," LSE Research Online Documents on Economics 60185, London School of Economics and Political Science, LSE Library.
- Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
- Shonosuke Sugasawa & Tatsuya Kubokawa, 2013. " Parametric Transformed Fay-Herriot Model for Small Area Estimation ," CIRJE F-Series CIRJE-F-911, CIRJE, Faculty of Economics, University of Tokyo.
- F Bravo, 2008. "Effcient M-estimators with auxiliary information," Discussion Papers 08/26, Department of Economics, University of York.
- Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
- Hazelton, Martin L. & Turlach, Berwin A., 2007. "Reweighted kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3057-3069, March.
- Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
- Xu, Ke-Li & Phillips, Peter C. B., 2011.
"Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 518-528.
- Ke-Li Xu & Peter C. B. Phillips, 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 518-528, October.
- Liangjun Su & Zhenlin Yang, 2008.
"Asymptotics and Bootstrap for Transformed Panel Data Regressions,"
Development Economics Working Papers
22477, East Asian Bureau of Economic Research.
- Liangjun Su & Zhenlin Yang, 2009. "Asymptotics and Bootstrap for Transformed Panel Data Regressions," Working Papers 03-2009, Singapore Management University, School of Economics.
- Arnab Bhattacharjee, 2005. "Models of Firm Dynamics and the Hazard Rate of Exits: Reconciling Theory and Evidence using Hazard Regression Models," Econometrics 0503021, University Library of Munich, Germany.
- Planas, Christophe & Rossi, Alessandro, 2018. "The slice sampler and centrally symmetric distributions," JRC Working Papers in Economics and Finance 2018-11, Joint Research Centre, European Commission.
- Y.F. Chan, Kenny & M.S. Lee, Stephen, 2001. "An exact iterated bootstrap algorithm for small-sample bias reduction," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 1-13, March.
- Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
- Daniel J. Henderson & Christopher F. Parmeter, 2009.
"Imposing economic constraints in nonparametric regression: survey, implementation, and extension,"
Advances in Econometrics, in: Nonparametric Econometric Methods, pages 433-469,
Emerald Group Publishing Limited.
- Henderson, Daniel J. & Parmeter, Christopher F., 2009. "Imposing Economic Constraints in Nonparametric Regression: Survey, Implementation and Extension," IZA Discussion Papers 4103, Institute of Labor Economics (IZA).
- Francesco Bravo, "undated". "Higher order asymptotics and the bootstrap for empirical likelihood J tests," Discussion Papers 00/30, Department of Economics, University of York.
- Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
- Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
- Farzaneh Boroumand & Mohammad Taghi Shakeri & Touka Banaee & Hamidreza Pourreza & Hassan Doosti, 2021. "An Analysis of the Areas Occupied by Vessels in the Ocular Surface of Diabetic Patients: An Application of a Nonparametric Tilted Additive Model," IJERPH, MDPI, vol. 18(7), pages 1-14, April.
More about this item
Keywords
Bias; Box–Cox transformation; Kurtosis; Skewness; Variance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:2:p:297-315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.