IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i4p1051-1073.html
   My bibliography  Save this article

Weighted nonparametric regression estimation with truncated and dependent data

Author

Listed:
  • Han-Ying Liang

Abstract

By applying the empirical likelihood method, we construct a new weighted Nadaraya-Watson type estimator of the conditional mean function for a left truncation model. The function includes the regression function, conditional moment as well as conditional distribution function. Under strong mixing assumptions, we obtain the asymptotic normality and weak consistency of the estimator. Finite sample behaviour of the estimator is investigated via simulations too.

Suggested Citation

  • Han-Ying Liang, 2012. "Weighted nonparametric regression estimation with truncated and dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1051-1073, December.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:4:p:1051-1073
    DOI: 10.1080/10485252.2012.721516
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.721516
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.721516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    2. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    3. Anouar El Ghouch & Ingrid Van Keilegom, 2008. "Non‐parametric Regression with Dependent Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 228-247, June.
    4. P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
    5. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    6. Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
    7. Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saliha Derrar & Ali Laksaci & Elias Ould Saïd, 2020. "M-estimation of the regression function under random left truncation and functional time series model," Statistical Papers, Springer, vol. 61(3), pages 1181-1202, June.
    2. Han-Ying Liang & Elias Ould Saïd, 2018. "A weighted estimator of conditional hazard rate with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 155-189, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Ying Liang & Elias Ould Saïd, 2018. "A weighted estimator of conditional hazard rate with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 155-189, February.
    2. Han-Ying Liang & Jacobo Uña-Álvarez & María Iglesias-Pérez, 2011. "Local polynomial estimation of a conditional mean function with dependent truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 653-677, November.
    3. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    4. Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
    5. Han-Ying Liang & Jacobo Uña-álvarez & María Iglesias-pérez, 2015. "A Central Limit Theorem in Non-parametric Regression with Truncated, Censored and Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 256-269, March.
    6. Xu, Ke-Li & Phillips, Peter C. B., 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 518-528.
    7. Peter C.B. Phillips & Ke-Li Xu, 2007. "Tilted Nonparametric Estimation of Volatility Functions," Cowles Foundation Discussion Papers 1612, Cowles Foundation for Research in Economics, Yale University, revised Jul 2010.
    8. Isabel Casas & Irene Gijbels, 2009. "Unstable volatility functions: the break preserving local linear estimator," CREATES Research Papers 2009-48, Department of Economics and Business Economics, Aarhus University.
    9. Wang, Jiang-Feng & Ma, Wei-Min & Fan, Guo-Liang & Wen, Li-Min, 2015. "Local linear quantile regression with truncated and dependent data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 232-240.
    10. Muhammad Hanif, 2011. "Reweighted Nadaraya-Watson estimator of scalar diffusion models by using asymmetric kernels," Far East Journal of Psychology and Business, Far East Research Centre, vol. 4(5), pages 53-69, July.
    11. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    12. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    13. Wang, Jiang-Feng & Ma, Wei-Min & Zhang, Hui-Zeng & Wen, Li-Min, 2013. "Asymptotic normality for a local composite quantile regression estimator of regression function with truncated data," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1571-1579.
    14. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    15. repec:wyi:journl:002095 is not listed on IDEAS
    16. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    17. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    18. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    19. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    20. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    21. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    22. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:4:p:1051-1073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.