IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v5y2003i1d10.1023_a1024129421819.html
   My bibliography  Save this article

Estimation and Design of Sampling Plans for Monitoring Dependent Production Processes

Author

Listed:
  • P. Vellaisamy

    (Indian Institute of Technology)

  • S. Sankar

    (Indian Institute of Technology)

  • M. Taniguchi

    (Osaka University, Toyonaka)

Abstract

We consider the problem of designing single and the double sampling plans for monitoring dependent production processes. Based on simulated samples from the process, Nelson proposed a new approach of estimating the characteristics of single sampling plans and, using these estimates, designing optimal plans. In this paper, we extend his approach to the design of optimal double sampling plans. We first propose a simple methodology for obtaining the unbiased estimators of various characteristics of single and double sampling plans. This is achieved by defining the various characteristics of sampling plans as explicit random variables. Some of the important properties of the double sampling plans are established. Using these results, an efficient algorithm is developed to obtain optimal double sampling plans. A comparison with a crude search shows that our algorithm leads to about 90% savings, on the average, in computational timings. The procedure is also explained through a suitable example for the ARMA(1,1) model. It is observed, for instance, that an optimal double sampling plan leads to about 23% reduction in average sample number, compared to an optimal single sampling plan. Tables for choosing the optimal plans for certain auto regressive moving average processes at some practically useful values of acceptable quality level and rejectable quality level are also presented.

Suggested Citation

  • P. Vellaisamy & S. Sankar & M. Taniguchi, 2003. "Estimation and Design of Sampling Plans for Monitoring Dependent Production Processes," Methodology and Computing in Applied Probability, Springer, vol. 5(1), pages 85-108, March.
  • Handle: RePEc:spr:metcap:v:5:y:2003:i:1:d:10.1023_a:1024129421819
    DOI: 10.1023/A:1024129421819
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1024129421819
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1024129421819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Vellaisamy & S. Sankar, 2001. "Sequential and systematic sampling plans for the Markov‐dependent production process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 451-467, September.
    2. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Vellaisamy & S. Sankar, 2005. "A Unified Approach for Modeling and Designing Attribute Sampling Plans for Monitoring Dependent Production Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 307-323, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Vellaisamy & S. Sankar, 2005. "A Unified Approach for Modeling and Designing Attribute Sampling Plans for Monitoring Dependent Production Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 307-323, September.
    2. Samari, Goleen & Catalano, Ralph & Alcalá, Héctor E. & Gemmill, Alison, 2020. "The Muslim Ban and preterm birth: Analysis of U.S. vital statistics data from 2009 to 2018," Social Science & Medicine, Elsevier, vol. 265(C).
    3. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská & Marcela Pavlíčková, 2023. "Use of Statistical Process Control for Coking Time Monitoring," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    4. Johannes Freiesleben & Nicolas Gu'erin, 2015. "Homogenization and Clustering as a Non-Statistical Methodology to Assess Multi-Parametrical Chain Problems," Papers 1505.03874, arXiv.org, revised Dec 2017.
    5. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    6. Timothy M. Young & Ampalavanar Nanthakumar & Hari Nanthakumar, 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    7. Thaga K. & Kgosi P. M. & Gabaitiri L., 2007. "Max-Chart for Autocorrelated Processes," Stochastics and Quality Control, De Gruyter, vol. 22(1), pages 87-105, January.
    8. A. Snoussi, 2011. "SPC for short-run multivariate autocorrelated processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2303-2312.
    9. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    10. Mohamed El Ghourabi & Amira Dridi & Mohamed Limam, 2015. "A new financial stress index model based on support vector regression and control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 775-788, April.
    11. Ridley, D. & Duke, D., 2007. "Moving -window spectral model based statistical process control," International Journal of Production Economics, Elsevier, vol. 105(2), pages 492-509, February.
    12. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    13. Gulser Koksal & Burcu Kantar & Taylan Ali Ula & Murat Caner Testik, 2008. "The effect of Phase I sample size on the run length performance of control charts for autocorrelated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(1), pages 67-87.
    14. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    15. Croux, C. & Gelper, S. & Mahieu, K., 2010. "Robust Control Charts for Time Series Data," Other publications TiSEM 229a21da-3d8a-4764-9d78-5, Tilburg University, School of Economics and Management.
    16. West, David A. & Mangiameli, Paul M. & Chen, Shaw K., 1999. "Control of complex manufacturing processes: a comparison of SPC methods with a radial basis function neural network," Omega, Elsevier, vol. 27(3), pages 349-362, June.
    17. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    18. Croux, C. & Gelper, S. & Mahieu, K., 2010. "Robust Control Charts for Time Series Data," Discussion Paper 2010-107, Tilburg University, Center for Economic Research.
    19. Jinho Kim & Myong K. Jeong & Elsayed A. Elsayed, 2017. "Monitoring multistage processes with autocorrelated observations," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2385-2396, April.
    20. Dong Han & Fugee Tsung, 2005. "Comparison of the cuscore, GLRT and cusum control charts for detecting a dynamic mean change," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 531-552, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:5:y:2003:i:1:d:10.1023_a:1024129421819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.