IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i10p2303-2312.html
   My bibliography  Save this article

SPC for short-run multivariate autocorrelated processes

Author

Listed:
  • A. Snoussi

Abstract

This paper discusses the development of a multivariate control charting technique for short-run autocorrelated data manufacturing environment. The proposed approach is a combination of the multivariate residual charts for autocorrelated data and the multivariate transformation technique for i.i.d. process observations of short lengths. The proposed approach consists in fitting adequate multivariate time-series model of various process outputs and computes the residuals, transforming them into standard normal N(0, 1) data and then using standardized data as inputs to plot conventional univariate i.i.d. control charts. The objective for applying multivariate finite horizon techniques for autocorrelated processes is to allow continuous process monitoring, since all process outputs are controlled trough the use of a single control chart with constant control limits. Throughout simulated examples, it is shown that the proposed short-run process monitoring technique provides approximately similar shifts detection properties as VAR residual charts.

Suggested Citation

  • A. Snoussi, 2011. "SPC for short-run multivariate autocorrelated processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2303-2312.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2303-2312
    DOI: 10.1080/02664763.2010.547566
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664763.2010.547566
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.547566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Xia & Jarrett, Jeffrey, 2007. "Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation," International Journal of Production Economics, Elsevier, vol. 106(1), pages 204-216, March.
    2. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    3. Xia Pan & Jeffrey Jarrett, 2004. "Applying State Space to SPC: Monitoring Multivariate Time Series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(4), pages 397-418.
    4. Jarrett, Jeffrey E. & Pan, Xia, 2007. "The quality control chart for monitoring multivariate autocorrelated processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3862-3870, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filho, Danilo Marcondes & Valk, Marcio, 2020. "Dynamic VAR model-based control charts for batch process monitoring," European Journal of Operational Research, Elsevier, vol. 285(1), pages 296-305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey Jarrett, 2014. "The quality movement in hospital care," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3153-3167, November.
    2. Roberto Campos Leoni & Marcela Aparecida Guerreiro Machado & Antonio Fernando Branco Costa, 2016. "The T -super-2 chart with mixed samples to control bivariate autocorrelated processes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3294-3310, June.
    3. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    4. Pan, Xia & Jarrett, Jeffrey, 2007. "Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation," International Journal of Production Economics, Elsevier, vol. 106(1), pages 204-216, March.
    5. Jeffrey E. Jarrett & Xia Pan, 2007. "Monitoring Variability and Analyzing Multivariate Autocorrelated Processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(4), pages 459-469.
    6. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
    7. Messaoud, Amor & Weihs, Claus & Hering, Franz, 2008. "Detection of chatter vibration in a drilling process using multivariate control charts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3208-3219, February.
    8. Samari, Goleen & Catalano, Ralph & Alcalá, Héctor E. & Gemmill, Alison, 2020. "The Muslim Ban and preterm birth: Analysis of U.S. vital statistics data from 2009 to 2018," Social Science & Medicine, Elsevier, vol. 265(C).
    9. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská & Marcela Pavlíčková, 2023. "Use of Statistical Process Control for Coking Time Monitoring," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    10. Johannes Freiesleben & Nicolas Gu'erin, 2015. "Homogenization and Clustering as a Non-Statistical Methodology to Assess Multi-Parametrical Chain Problems," Papers 1505.03874, arXiv.org, revised Dec 2017.
    11. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    12. Timothy M. Young & Ampalavanar Nanthakumar & Hari Nanthakumar, 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    13. Thaga K. & Kgosi P. M. & Gabaitiri L., 2007. "Max-Chart for Autocorrelated Processes," Stochastics and Quality Control, De Gruyter, vol. 22(1), pages 87-105, January.
    14. Peruchi, Rogério Santana & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & Ferreira, João Roberto & de Santana Carmelossi, Michele, 2013. "A new multivariate gage R&R method for correlated characteristics," International Journal of Production Economics, Elsevier, vol. 144(1), pages 301-315.
    15. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    16. Mohamed El Ghourabi & Amira Dridi & Mohamed Limam, 2015. "A new financial stress index model based on support vector regression and control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 775-788, April.
    17. Ridley, D. & Duke, D., 2007. "Moving -window spectral model based statistical process control," International Journal of Production Economics, Elsevier, vol. 105(2), pages 492-509, February.
    18. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    19. Gulser Koksal & Burcu Kantar & Taylan Ali Ula & Murat Caner Testik, 2008. "The effect of Phase I sample size on the run length performance of control charts for autocorrelated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(1), pages 67-87.
    20. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2303-2312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.