IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i2d10.1007_s11009-022-09942-5.html
   My bibliography  Save this article

Portfolio Optimization With a Guaranteed Minimum Maturity Benefit and Risk-Adjusted Fees

Author

Listed:
  • Anne MacKay

    (Université de Sherboroke)

  • Adriana Ocejo

    (University of North Carolina at Charlotte)

Abstract

We study a portfolio optimization problem involving the loss averse policyholder of a variable annuity with a guaranteed minimum maturity benefit. This financial guarantee is financed via a fee withdrawn directly from the investment account, which impacts the net investment return. A fair pricing constraint is defined in terms of the risk-neutral value of the final contract payout. We propose a new fee structure that adjusts to the investment mix maximizing policyholder’s utility while keeping the contract fairly priced. We seek the investment strategy that maximizes the policyholder’s expected utility of terminal wealth after the application of a financial guarantee and subject to the fair pricing constraint. We assume that the policyholder’s risk attitude is relative to a reference level, risk-seeking towards losses and risk-averse towards gains. We solve the associated constrained stochastic control problem using a martingale approach and analyze the impact of the fee structure on the optimal investment strategies and payoff. Numerical results show that it is possible to find an optimal portfolio for a wide range of fees, while keeping the contract fairly priced.

Suggested Citation

  • Anne MacKay & Adriana Ocejo, 2022. "Portfolio Optimization With a Guaranteed Minimum Maturity Benefit and Risk-Adjusted Fees," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1021-1049, June.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-022-09942-5
    DOI: 10.1007/s11009-022-09942-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09942-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09942-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Hongcan & Saunders, David & Weng, Chengguo, 2017. "Optimal investment strategies for participating contracts," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 137-155.
    2. Lin He & Zongxia Liang & Yang Liu & Ming Ma, 2019. "Optimal Control of DC Pension Plan Management under Two Incentive Schemes," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(1), pages 120-141, January.
    3. Jennifer N. Carpenter, 2000. "Does Option Compensation Increase Managerial Risk Appetite?," Journal of Finance, American Finance Association, vol. 55(5), pages 2311-2331, October.
    4. Emilio Barucci & Daniele Marazzina & Elisa Mastrogiacomo, 2021. "Optimal investment strategies with a minimum performance constraint," Annals of Operations Research, Springer, vol. 299(1), pages 215-239, April.
    5. Kasper Larsen, 2005. "Optimal portfolio delegation when parties have different coefficients of risk aversion," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 503-512.
    6. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    7. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    10. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    11. Xue Dong He & Steven Kou, 2018. "Profit Sharing In Hedge Funds," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 50-81, January.
    12. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    13. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    14. Anne MacKay & Maciej Augustyniak & Carole Bernard & Mary R. Hardy, 2017. "Risk Management of Policyholder Behavior in Equity-Linked Life Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 661-690, June.
    15. Zhenyu Cui & Runhuan Feng & Anne MacKay, 2017. "Variable Annuities with VIX-Linked Fee Structure under a Heston-Type Stochastic Volatility Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 458-483, July.
    16. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    17. El Karoui, Nicole & Jeanblanc, Monique & Lacoste, Vincent, 2005. "Optimal portfolio management with American capital guarantee," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 449-468, March.
    18. Maxim Bichuch & Stephan Sturm, 2014. "Portfolio optimization under convex incentive schemes," Finance and Stochastics, Springer, vol. 18(4), pages 873-915, October.
    19. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    20. Sang Wu & Yinghui Dong & Wenxin Lv & Guojing Wang, 2020. "Optimal asset allocation for participating contracts with mortality risk under minimum guarantee," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(14), pages 3481-3497, July.
    21. Tversky, Amos & Kahneman, Daniel, 1986. "Rational Choice and the Framing of Decisions," The Journal of Business, University of Chicago Press, vol. 59(4), pages 251-278, October.
    22. Ralf Korn, 1997. "Optimal Portfolios:Stochastic Models for Optimal Investment and Risk Management in Continuous Time," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 3548, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    2. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    3. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    4. Guohui Guan & Zongxia Liang & Yi xia, 2021. "Optimal management of DC pension fund under relative performance ratio and VaR constraint," Papers 2103.04352, arXiv.org.
    5. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    6. Christian Dehm & Thai Nguyen & Mitja Stadje, 2020. "Non-concave expected utility optimization with uncertain time horizon," Papers 2005.13831, arXiv.org, revised Oct 2021.
    7. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    8. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    9. Escobar-Anel, M. & Havrylenko, Y. & Zagst, R., 2020. "Optimal fees in hedge funds with first-loss compensation," Journal of Banking & Finance, Elsevier, vol. 118(C).
    10. Constantin Mellios & Anh Ngoc Lai, 2022. "Incentive Fees with a Moving Benchmark and Portfolio Selection under Loss Aversion," Post-Print hal-03708926, HAL.
    11. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    12. Ankush Agarwal & Christian-Oliver Ewald & Yongjie Wang, 2023. "Hedging longevity risk in defined contribution pension schemes," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    13. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    14. Zongxia Liang & Yang Liu & Ming Ma & Rahul Pothi Vinoth, 2021. "A Unified Formula of the Optimal Portfolio for Piecewise Hyperbolic Absolute Risk Aversion Utilities," Papers 2107.06460, arXiv.org, revised Oct 2023.
    15. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2020. "The importance of dynamic risk constraints for limited liability operators," Papers 2011.03314, arXiv.org.
    16. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    17. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, March.
    18. Guohui Guan & Zongxia Liang & Yi Xia, 2023. "Optimal management of DB pension fund under both underfunded and overfunded cases," Papers 2302.08731, arXiv.org.
    19. Yang Liu & Zhenyu Shen, 2024. "PSAHARA Utility Family: Modeling Non-monotone Risk Aversion and Convex Compensation in Incomplete Markets," Papers 2406.00435, arXiv.org, revised Nov 2024.
    20. Emilio Barucci & Daniele Marazzina & Elisa Mastrogiacomo, 2021. "Optimal investment strategies with a minimum performance constraint," Annals of Operations Research, Springer, vol. 299(1), pages 215-239, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-022-09942-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.