IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i8p1438-1450.html
   My bibliography  Save this article

Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions

Author

Listed:
  • Zhushun Yuan

    (Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada)

  • Gemai Chen

    (Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada)

Abstract

Empirical martingale simulation (EMS) was proposed by Duan and Simonato (Duan, J.-C., J.-G. Simonato. 1998. Empirical martingale simulation for asset prices. Management Sci. 44(9) 1218-1233) as an adjustment to the standard Monte Carlo simulation to reduce simulation errors. The EMS price estimator of derivative contracts was shown to be asymptotically normally distributed in Duan et al. (Duan, J.-C., G. Gauthier, J.-G. Simonato. 2001. Asymptotic distribution of the EMS option price estimator. Management Sci. 47(8) 1122-1132) when the payoffs are piecewise linear and continuous. In this paper, we extend the asymptotic normality result to more general continuous payoffs, and for discontinuous payoffs we make a conjecture.

Suggested Citation

  • Zhushun Yuan & Gemai Chen, 2009. "Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions," Management Science, INFORMS, vol. 55(8), pages 1438-1450, August.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:8:p:1438-1450
    DOI: 10.1287/mnsc.1090.1036
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1090.1036
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1090.1036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Harikumar & Maria E. de Boyrie & Simon J. Pak, 2004. "Evaluation of Black-Scholes and GARCH Models Using Currency Call Options Data," Review of Quantitative Finance and Accounting, Springer, vol. 23(4), pages 299-312, December.
    2. Jin-Chuan Duan & Jean-Guy Simonato, 1995. "Empirical Martingale Simulation for Asset Prices," CIRANO Working Papers 95s-43, CIRANO.
    3. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    4. Wei, J.Z. & Duan, J.C., 1999. "Pricing Foreign Currency and Cross-Currency Options Under GARCH," Rotman School of Management - Finance 99-01, Rotman School of Management, University of Toronto.
    5. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    6. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    7. Wolff, Christian & Bams, Dennis & Lehnert, Thorsten, 2005. "Loss Functions in Option Valuation: A Framework for Model Selection," CEPR Discussion Papers 4960, C.E.P.R. Discussion Papers.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.
    2. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    3. Christian Wolff & Thorsten Lehnert & Cokki Versluis, 2009. "A Cumulative Prospect Theory Approach to Option Pricing," LSF Research Working Paper Series 09-03, Luxembourg School of Finance, University of Luxembourg.
    4. Christian Menn & Svetlozar Rachev, 2009. "Smoothly truncated stable distributions, GARCH-models, and option pricing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 411-438, July.
    5. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    6. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    7. Aparna Bhat & Kirti Arekar, 2016. "Empirical Performance of Black-Scholes and GARCH Option Pricing Models during Turbulent Times: The Indian Evidence," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(3), pages 123-136, March.
    8. Monfort, Alain & Pegoraro, Fulvio, 2012. "Asset pricing with Second-Order Esscher Transforms," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1678-1687.
    9. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    10. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    11. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    12. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    13. repec:dau:papers:123456789/2138 is not listed on IDEAS
    14. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    15. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    16. Duan, Jin-Chuan & Yu, Min-Teh, 1999. "Capital standard, forbearance and deposit insurance pricing under GARCH," Journal of Banking & Finance, Elsevier, vol. 23(11), pages 1691-1706, November.
    17. Joanna Górka, 2014. "Option Pricing under Sign RCA-GARCH Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 14, pages 145-160.
    18. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    19. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    20. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    21. Lingling Xu & Hongjie Zhang & Fu Lee Wang, 2023. "Pricing of Arithmetic Average Asian Option by Combining Variance Reduction and Quasi-Monte Carlo Method," Mathematics, MDPI, vol. 11(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:8:p:1438-1450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.