IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p630-d1342666.html
   My bibliography  Save this article

Randomly Shifted Lattice Rules with Importance Sampling and Applications

Author

Listed:
  • Hejin Wang

    (École Nationale de la Statistique et de L’administration Économique Paris, 91120 Paris, France
    Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

  • Zhan Zheng

    (Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
    These authors contributed equally to this work.)

Abstract

In financial and statistical computations, calculating expectations often requires evaluating integrals with respect to a Gaussian measure. Monte Carlo methods are widely used for this purpose due to their dimension-independent convergence rate. Quasi-Monte Carlo is the deterministic analogue of Monte Carlo and has the potential to substantially enhance the convergence rate. Importance sampling is a widely used variance reduction technique. However, research into the specific impact of importance sampling on the integrand, as well as the conditions for convergence, is relatively scarce. In this study, we combine the randomly shifted lattice rule with importance sampling. We prove that, for unbounded functions, randomly shifted lattice rules combined with a suitably chosen importance density can achieve convergence as quickly as O ( N − 1 + ϵ ) , given N samples for arbitrary ϵ values under certain conditions. We also prove that the conditions of convergence for Laplace importance sampling are stricter than those for optimal drift importance sampling. Furthermore, using a generalized linear mixed model and Randleman–Bartter model, we provide the conditions under which functions utilizing Laplace importance sampling achieve convergence rates of nearly O ( N − 1 + ϵ ) for arbitrary ϵ values.

Suggested Citation

  • Hejin Wang & Zhan Zheng, 2024. "Randomly Shifted Lattice Rules with Importance Sampling and Applications," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:630-:d:1342666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Y. Kuo & W. T. M. Dunsmuir & I. H. Sloan & M. P. Wand & R. S. Womersley, 2008. "Quasi-Monte Carlo for Highly Structured Generalised Response Models," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 239-275, June.
    2. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    3. Reiichiro Kawai, 2008. "Adaptive Monte Carlo Variance Reduction for Lévy Processes with Two-Time-Scale Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 199-223, June.
    4. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    5. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    6. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    7. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    8. Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
    9. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    10. Bernard Lapeyre & J'er^ome Lelong, 2010. "A framework for adaptive Monte-Carlo procedures," Papers 1001.3551, arXiv.org, revised Jul 2010.
    11. Adam W. Kolkiewicz, 2016. "Efficient Hedging Of Path–Dependent Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-27, August.
    12. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    13. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    14. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    15. Pierre Etore & Gersende Fort & Benjamin Jourdain & Eric Moulines, 2011. "On adaptive stratification," Annals of Operations Research, Springer, vol. 189(1), pages 127-154, September.
    16. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    17. Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.
    18. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    19. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    20. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:630-:d:1342666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.