IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i1d10.1007_s11009-017-9542-y.html
   My bibliography  Save this article

An Efficient Algorithm for Simulating the Drawdown Stopping Time and the Running Maximum of a Brownian Motion

Author

Listed:
  • Angelos Dassios

    (London School of Economics)

  • Jia Wei Lim

    (University of Bristol)

Abstract

We define the drawdown stopping time of a Brownian motion as the first time its drawdown reaches a duration of length 1. In this paper, we propose an efficient algorithm to efficiently simulate the drawdown stopping time and the associated maximum at this time. The method is straightforward and fast to implement, and avoids simulating sample paths thus eliminating discretisation bias. We show how the simulation algorithm is useful for pricing more complicated derivatives such as multiple drawdown options.

Suggested Citation

  • Angelos Dassios & Jia Wei Lim, 2018. "An Efficient Algorithm for Simulating the Drawdown Stopping Time and the Running Maximum of a Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 189-204, March.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9542-y
    DOI: 10.1007/s11009-017-9542-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9542-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9542-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Hongzhong Zhang & Olympia Hadjiliadis, 2011. "Maximum Drawdown Insurance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1195-1230.
    2. Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
    3. Angelos Dassios & Shanle Wu, 2010. "Perturbed Brownian motion and its application to Parisian option pricing," Finance and Stochastics, Springer, vol. 14(3), pages 473-494, September.
    4. Carole Bernard & Phelim Boyle, 2011. "Monte Carlo methods for pricing discrete Parisian options," The European Journal of Finance, Taylor & Francis Journals, vol. 17(3), pages 169-196.
    5. J. H. M. Anderluh, 2008. "Pricing Parisians and barriers by hitting time simulation," The European Journal of Finance, Taylor & Francis Journals, vol. 14(2), pages 137-156.
    6. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    2. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    3. Korn, Olaf & Möller, Philipp M. & Schwehm, Christian, 2019. "Drawdown measures: Are they all the same?," CFR Working Papers 19-04, University of Cologne, Centre for Financial Research (CFR).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    2. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    3. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    4. Angelos Dassios & Jia Wei Lim & Yan Qu, 2020. "Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero‐coupon bonds," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1497-1526, October.
    5. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    6. Dassios, Angelos & Lim, Jia Wei, 2017. "An analytical solution for the two-sided Parisian stopping time, its asymptotics and the pricing of Parisian options," LSE Research Online Documents on Economics 60154, London School of Economics and Political Science, LSE Library.
    7. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    8. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
    9. Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
    10. Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
    11. Dassios, Angelos & Lim, Jia Wei & Qu, Yan, 2020. "Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero-coupon bonds," LSE Research Online Documents on Economics 101765, London School of Economics and Political Science, LSE Library.
    12. Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Fair valuation of L\'evy-type drawdown-drawup contracts with general insured and penalty functions," Papers 1712.04418, arXiv.org, revised Feb 2018.
    13. Zied Ben-Salah & H'el`ene Gu'erin & Manuel Morales & Hassan Omidi Firouzi, 2014. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Papers 1406.6952, arXiv.org.
    14. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    15. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    16. Angelos Dassios & Junyi Zhang, 2022. "First Hitting Time of Brownian Motion on Simple Graph with Skew Semiaxes," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1805-1831, September.
    17. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    18. Anna Ananova & Rama Cont & Renyuan Xu, 2020. "Model-free Analysis of Dynamic Trading Strategies," Papers 2011.02870, arXiv.org, revised Aug 2023.
    19. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    20. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9542-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.