IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i1p297-318.html
   My bibliography  Save this article

Selective inference on multiple families of hypotheses

Author

Listed:
  • Yoav Benjamini
  • Marina Bogomolov

Abstract

type="main" xml:id="rssb12028-abs-0001"> In many complex multiple-testing problems the hypotheses are divided into families. Given the data, families with evidence for true discoveries are selected, and hypotheses within them are tested. Neither controlling the error rate in each family separately nor controlling the error rate over all hypotheses together can assure some level of confidence about the filtration of errors within the selected families. We formulate this concern about selective inference in its generality, for a very wide class of error rates and for any selection criterion, and present an adjustment of the testing level inside the selected families that retains control of the expected average error over the selected families.

Suggested Citation

  • Yoav Benjamini & Marina Bogomolov, 2014. "Selective inference on multiple families of hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 297-318, January.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:1:p:297-318
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2013.76.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Ian, 2022. "In-sample tests of predictability are superior to pseudo-out-of-sample tests, even when data mining," International Journal of Forecasting, Elsevier, vol. 38(3), pages 872-877.
    2. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    3. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    4. Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
    5. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    6. Yu-Chin Hsu & Hsiou-Wei Lin & Kendro Vincent, 2017. "Do Cross-Sectional Stock Return Predictors Pass the Test without Data-Snooping Bias?," IEAS Working Paper : academic research 17-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    7. Rina Foygel Barber & Aaditya Ramdas, 2017. "The p-filter: multilayer false discovery rate control for grouped hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1247-1268, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:1:p:297-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.