IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i9d10.1057_jors.2010.121.html
   My bibliography  Save this article

Predicting the false alarm rate in multi-institution mortality monitoring

Author

Listed:
  • A Bottle

    (Dr Foster Unit at Imperial)

  • P Aylin

    (Dr Foster Unit at Imperial)

Abstract

Statistical process control is increasingly used by single hospitals or centres to monitor their performance, but national monitoring across multiple centres, measures and groups incurs higher false alarm rates unless the method is modified. We consider setting the threshold for cumulative sum charts to produce the desired false alarm rate, taking into account the centre volume and expected outcome rate. We used simulation to estimate the false alarm and successful detection rates for a variety of chart thresholds. We thereby calculated the ‘cost’ of a higher threshold compared with one set to give a false alarm rate of 5% for three clinical groups of common interest. The false alarm rate often showed non-linear relations with the threshold, volume and expected mortality rate but an equation was found with good approximation to the simulated values. The relation between these factors and the ‘cost’ of a higher threshold was not straightforward. The ‘cost’ (difference in number of deaths) incurred by raising the chart threshold provides an intuitive measure and is applicable to other settings.

Suggested Citation

  • A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.121
    DOI: 10.1057/jors.2010.121
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.121
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    2. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    3. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    2. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    3. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    4. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    5. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    6. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    7. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    8. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    9. Simina M. Boca & Héctor Céorrada Bravo & Brian Caffo & Jeffrey T. Leek & Giovanni Parmigiani, 2013. "A Decision-Theory Approach to Interpretable Set Analysis for High-Dimensional Data," Biometrics, The International Biometric Society, vol. 69(3), pages 614-623, September.
    10. Yongqiang Tang & Subhashis Ghosal & Anindya Roy, 2007. "Nonparametric Bayesian Estimation of Positive False Discovery Rates," Biometrics, The International Biometric Society, vol. 63(4), pages 1126-1134, December.
    11. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    12. Debashis Ghosh & Wei Chen & Trivellore Raghuanthan, 2004. "The false discovery rate: a variable selection perspective," The University of Michigan Department of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.
    13. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    14. Guo, Wenge & Bhaskara Rao, M., 2008. "On optimality of the Benjamini-Hochberg procedure for the false discovery rate," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2024-2030, October.
    15. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    16. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    17. Clare Marshall & Nicky Best & Alex Bottle & Paul Aylin, 2004. "Statistical issues in the prospective monitoring of health outcomes across multiple units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 541-559, August.
    18. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    19. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    20. Jiaying Gu & Roger Koenker, 2023. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Econometrica, Econometric Society, vol. 91(1), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.