IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i2p251-271.html
   My bibliography  Save this article

False discovery rates and copy number variation

Author

Listed:
  • Bradley Efron
  • Nancy R. Zhang

Abstract

Copy number changes, the gains and losses of chromosome segments, are a common type of genetic variation among healthy individuals as well as an important feature in tumour genomes. Microarray technology enables us to simultaneously measure, with moderate accuracy, copy number variation at more than a million chromosome locations and for hundreds of subjects. This leads to massive data sets and complicated inference problems concerning which locations are more likely to vary. In this paper we consider a relatively simple false discovery rate approach to copy number analysis. More careful parametric change-point methods can then be focused on promising regions of the genome. Copyright 2011, Oxford University Press.

Suggested Citation

  • Bradley Efron & Nancy R. Zhang, 2011. "False discovery rates and copy number variation," Biometrika, Biometrika Trust, vol. 98(2), pages 251-271.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:251-271
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    2. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    3. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    4. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:251-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.