IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i4d10.1007_s11009-013-9325-z.html
   My bibliography  Save this article

Applications of the Variance of Final Outbreak Size for Disease Spreading in Networks

Author

Listed:
  • Lilia L. Ramírez-Ramírez

    (ITAM)

  • Mary E. Thompson

    (University of Waterloo)

Abstract

The assumption that all susceptible individuals are equally likely to acquire the disease during an outbreak (by direct contact with an infective individual) can be relaxed by bringing into the disease spread model a contact structure between individuals in the population. The structure is a random network or random graph that describes the kind of contacts that can result in transmission. In this paper we use an approach similar to the approaches of Andersson (Ann Appl Probab 8(4):1331–1349, 1998) and Newman (Phys Rev E 66:16128, 2002) to study not only the expected values of final sizes of small outbreaks, but also their variability. Using these first two moments, a probability interval for the outbreak size is suggested based on Chebyshev’s inequality. We examine its utility in results from simulated small outbreaks evolving in simulated random networks. We also revisit and modify two related results from Newman (Phys Rev E 66:16128, 2002) to take into account the important fact that the infectious period of an infected individual is the same from the perspective of all the individual’s contacts. The theory developed in this area can be extended to describe other “infectious” processes such as the spread of rumors, ideas, information, and habits.

Suggested Citation

  • Lilia L. Ramírez-Ramírez & Mary E. Thompson, 2014. "Applications of the Variance of Final Outbreak Size for Disease Spreading in Networks," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 839-862, December.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9325-z
    DOI: 10.1007/s11009-013-9325-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9325-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9325-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Tom Britton & Theodore Kypraios & Philip D. O'Neill, 2011. "Inference for Epidemics with Three Levels of Mixing: Methodology and Application to a Measles Outbreak," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 578-599, September.
    4. N. Gilbert, 1997. "A Simulation of the Structure of Academic Science," Sociological Research Online, , vol. 2(2), pages 91-105, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    2. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    3. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    4. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    5. Filiposka, Sonja & Juiz, Carlos, 2015. "Community-based complex cloud data center," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 356-372.
    6. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    7. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    8. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    9. Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.
    10. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    11. Li, Hui & Zhao, Hai & Cai, Wei & Xu, Jiu-Qiang & Ai, Jun, 2013. "A modular attachment mechanism for software network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2025-2037.
    12. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    13. Wei, Ye & Jin, Ying & Ma, Dingyu & Xiu, Chunliang, 2021. "Impact of colored motif characteristics on the survivability of passenger airline networks in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    14. Yuji Yamamoto & Keiko Yokoyama, 2011. "Common and Unique Network Dynamics in Football Games," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-6, December.
    15. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    16. Gao, Yichao & Zheng, Zheng & Qin, Fangyun, 2014. "Analysis of Linux kernel as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 246-252.
    17. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    18. Luo, Xiaojuan & Hu, Yuhen & Zhu, Yu, 2014. "Topology evolution model for wireless multi-hop network based on socially inspired mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 639-650.
    19. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    20. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9325-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.