IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i4d10.1007_s11009-013-9325-z.html
   My bibliography  Save this article

Applications of the Variance of Final Outbreak Size for Disease Spreading in Networks

Author

Listed:
  • Lilia L. Ramírez-Ramírez

    (ITAM)

  • Mary E. Thompson

    (University of Waterloo)

Abstract

The assumption that all susceptible individuals are equally likely to acquire the disease during an outbreak (by direct contact with an infective individual) can be relaxed by bringing into the disease spread model a contact structure between individuals in the population. The structure is a random network or random graph that describes the kind of contacts that can result in transmission. In this paper we use an approach similar to the approaches of Andersson (Ann Appl Probab 8(4):1331–1349, 1998) and Newman (Phys Rev E 66:16128, 2002) to study not only the expected values of final sizes of small outbreaks, but also their variability. Using these first two moments, a probability interval for the outbreak size is suggested based on Chebyshev’s inequality. We examine its utility in results from simulated small outbreaks evolving in simulated random networks. We also revisit and modify two related results from Newman (Phys Rev E 66:16128, 2002) to take into account the important fact that the infectious period of an infected individual is the same from the perspective of all the individual’s contacts. The theory developed in this area can be extended to describe other “infectious” processes such as the spread of rumors, ideas, information, and habits.

Suggested Citation

  • Lilia L. Ramírez-Ramírez & Mary E. Thompson, 2014. "Applications of the Variance of Final Outbreak Size for Disease Spreading in Networks," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 839-862, December.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9325-z
    DOI: 10.1007/s11009-013-9325-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9325-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9325-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Britton & Theodore Kypraios & Philip D. O'Neill, 2011. "Inference for Epidemics with Three Levels of Mixing: Methodology and Application to a Measles Outbreak," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 578-599, September.
    2. N. Gilbert, 1997. "A Simulation of the Structure of Academic Science," Sociological Research Online, , vol. 2(2), pages 91-105, June.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    3. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    4. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    5. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    6. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    7. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    8. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    9. Filiposka, Sonja & Juiz, Carlos, 2015. "Community-based complex cloud data center," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 356-372.
    10. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    11. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    12. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    13. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    14. Yan, Li & Cao, Huiying & Gao, Chao & Wang, Zhen & Li, Xuelong, 2023. "Mining of book-loan behavior based on coupling relationship analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    15. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    16. Huang, C. Derrick & Behara, Ravi S., 2013. "Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints," International Journal of Production Economics, Elsevier, vol. 141(1), pages 255-268.
    17. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    18. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    20. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9325-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.