IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i4d10.1007_s11009-017-9589-9.html
   My bibliography  Save this article

Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors

Author

Listed:
  • Xin Deng

    (Anhui University)

  • Xuejun Wang

    (Anhui University)

Abstract

In this paper, we first establish a useful result on strong convergence for weighted sums of widely orthant dependent (WOD, in short) random variables. Based on the strong convergence that we established and the Bernstein type inequality, we investigate the strong consistency of M estimators of the regression parameters in linear models based on WOD random errors under some more mild moment conditions. The results obtained in the paper improve and extend the corresponding ones for negatively orthant dependent random variables and negatively superadditive dependent random variables. Finally, the simulation study is provided to illustrate the feasibility of the theoretical result that we established.

Suggested Citation

  • Xin Deng & Xuejun Wang, 2018. "Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1069-1090, December.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-017-9589-9
    DOI: 10.1007/s11009-017-9589-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9589-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9589-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Li, 2009. "Precise large deviations for dependent random variables with heavy tails," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1290-1298, May.
    2. Cheng, Ching-Shui & Li, Ker-Chau, 1984. "The strong consistency of M-estimators in linear models," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 91-98, August.
    3. Aiting Shen, 2013. "Bernstein-Type Inequality for Widely Dependent Sequence and Its Application to Nonparametric Regression Models," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, July.
    4. Radhakrishna Rao, C. & Zhao, LC., 1992. "On the consistency of M-estimate in a linear model obtained through an estimating equation," Statistics & Probability Letters, Elsevier, vol. 14(1), pages 79-84, May.
    5. Liu, Xijun & Gao, Qingwu & Wang, Yuebao, 2012. "A note on a dependent risk model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 707-712.
    6. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    7. Chen, X. R. & Wu, Y. H., 1988. "Strong consistency of M-estimates in linear models," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 116-130, October.
    8. Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
    9. Cui, Hengjian & He, Xuming & Ng, Kai W., 2004. "M-estimation for linear models with spatially-correlated errors," Statistics & Probability Letters, Elsevier, vol. 66(4), pages 383-393, March.
    10. Tingting Liu & Xuejun Wang & Xinghui Wang & Shuhe Hu, 2016. "On the exponential inequalities for widely orthant-dependent random variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(19), pages 5848-5856, October.
    11. He, Wei & Cheng, Dongya & Wang, Yuebao, 2013. "Asymptotic lower bounds of precise large deviations with nonnegative and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 331-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Yao & Wei Yu & Xuejun Wang, 2023. "Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Deng & Xuejun Wang, 2020. "An exponential inequality and its application to M estimators in multiple linear models," Statistical Papers, Springer, vol. 61(4), pages 1607-1627, August.
    2. Xuejun Wang & Xin Deng & Shuhe Hu, 2018. "On consistency of the weighted least squares estimators in a semiparametric regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 797-820, October.
    3. Aiting Shen & Huiling Tao & Xuejun Wang, 2020. "The asymptotic properties for the estimators of the survival function and failure rate function based on WOD samples," Statistical Papers, Springer, vol. 61(6), pages 2671-2684, December.
    4. Li Yongming & Li Naiyi & Luo Zhongde & Xing Guodong, 2024. "Asymptotic Behaviors of the VaR and CVaR Estimates for Widely Orthant Dependent Sequences," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-22, September.
    5. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    6. Yi Wu & Xuejun Wang & Aiting Shen, 2023. "Strong Convergence for Weighted Sums of Widely Orthant Dependent Random Variables and Applications," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-28, March.
    7. Mengmei Xi & Rui Wang & Zhaoyang Cheng & Xuejun Wang, 2020. "Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications," Statistical Papers, Springer, vol. 61(4), pages 1663-1684, August.
    8. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    9. Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    10. Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    11. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    12. Wenzhi Yang & Haiyun Xu & Ling Chen & Shuhe Hu, 2018. "Complete consistency of estimators for regression models based on extended negatively dependent errors," Statistical Papers, Springer, vol. 59(2), pages 449-465, June.
    13. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    14. Jin Yu Zhou & Ji Gao Yan & Fei Du, 2023. "Complete and Complete f -Moment Convergence for Arrays of Rowwise END Random Variables and Some Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1307-1330, August.
    15. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    16. Xuejun Wang & Yi Wu & Rui Wang & Shuhe Hu, 2021. "On consistency of wavelet estimator in nonparametric regression models," Statistical Papers, Springer, vol. 62(2), pages 935-962, April.
    17. Yang Yang & Xinzhi Wang & Xiaonan Su & Aili Zhang, 2019. "Asymptotic Behavior of Ruin Probabilities in an Insurance Risk Model with Quasi-Asymptotically Independent or Bivariate Regularly Varying-Tailed Main Claim and By-Claim," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    18. Aiting Shen & Andrei Volodin, 2017. "Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 605-625, November.
    19. Chen, Pingyan & Sung, Soo Hak, 2019. "A Spitzer-type law of large numbers for widely orthant dependent random variables," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    20. He, Wei & Cheng, Dongya & Wang, Yuebao, 2013. "Asymptotic lower bounds of precise large deviations with nonnegative and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 331-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-017-9589-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.