IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i3d10.1007_s11009-012-9287-6.html
   My bibliography  Save this article

Spatio-Temporal Model for a Random Set Given by a Union of Interacting Discs

Author

Listed:
  • Markéta Zikmundová

    (Charles University in Prague)

  • Kateřina Staňková Helisová

    (Czech Technical University in Prague)

  • Viktor Beneš

    (Charles University in Prague)

Abstract

A spatio-temporal random set parametric model is defined based on the union of interacting discs. There are two types of parameters: those of the spatial part of the model and those of the state space model for temporal evolution. The simulation of the random set is available using a Markov chain Monte Carlo algorithm. Integral-geometric characteristics are evaluated and serve as an input to parameter estimation. We compare an MCMC maximum likelihood estimator with a particle filter estimator in a simulation study by drawing their temporal evolution and globally by means of the integrated mean square error. Interpretations of parameters and possible applications are discussed.

Suggested Citation

  • Markéta Zikmundová & Kateřina Staňková Helisová & Viktor Beneš, 2012. "Spatio-Temporal Model for a Random Set Given by a Union of Interacting Discs," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 883-894, September.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:3:d:10.1007_s11009-012-9287-6
    DOI: 10.1007/s11009-012-9287-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-012-9287-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-012-9287-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
    2. Jesper Møller & Kateřina Helisová, 2010. "Likelihood Inference for Unions of Interacting Discs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 365-381, September.
    3. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    4. Anders Brix & Jesper Moller, 2001. "Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 471-488, September.
    5. Roger D. Peng & Frederic Paik Schoenberg & James A. Woods, 2005. "A Space-Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 26-35, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kateřina Staňková Helisová & Jakub Staněk, 2014. "Dimension Reduction in Extended Quermass-Interaction Process," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 355-368, June.
    2. Markéta Zikmundová & Kateřina Staňková Helisová & Viktor Beneš, 2014. "On the Use of Particle Markov Chain Monte Carlo in Parameter Estimation of Space-Time Interacting Discs," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 451-463, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    2. Reis, Edna A. & Gamerman, Dani & Paez, Marina S. & Martins, Thiago G., 2013. "Bayesian dynamic models for space–time point processes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 146-156.
    3. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    4. Møller, Jesper & Torrisi, Giovanni Luca, 2007. "The pair correlation function of spatial Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 995-1003, June.
    5. Rakhee Dinubhai Patel & Frederic Paik Schoenberg, 2011. "A graphical test for local self-similarity in univariate data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2547-2562, January.
    6. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    7. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    8. Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
    9. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    10. Zhang, Tonglin & Zhuang, Run, 2017. "Testing proportionality between the first-order intensity functions of spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 72-82.
    11. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    12. Waagepetersen, Rasmus, 2004. "Convergence of posteriors for discretized log Gaussian Cox processes," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 229-235, February.
    13. Athanasios Kottas, 2018. "Discussion of paper “nonparametric Bayesian inference in applications” by Peter Müller, Fernando A. Quintana and Garritt L. Page," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 219-225, June.
    14. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    15. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    17. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    18. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    19. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    20. Johan Debayle & Vesna Gotovac Ðogaš & Kateřina Helisová & Jakub Staněk & Markéta Zikmundová, 2021. "Assessing Similarity of Random sets via Skeletons," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 471-490, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:3:d:10.1007_s11009-012-9287-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.