IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i11p2547-2562.html
   My bibliography  Save this article

A graphical test for local self-similarity in univariate data

Author

Listed:
  • Rakhee Dinubhai Patel
  • Frederic Paik Schoenberg

Abstract

The Pareto distribution, or power-law distribution, has long been used to model phenomena in many fields, including wildfire sizes, earthquake seismic moments and stock price changes. Recent observations have brought the fit of the Pareto into question, however, particularly in the upper tail where it often overestimates the frequency of the largest events. This paper proposes a graphical self-similarity test specifically designed to assess whether a Pareto distribution fits better than a tapered Pareto or another alternative. Unlike some model selection methods, this graphical test provides the advantage of highlighting where the model fits well and where it breaks down. Specifically, for data that seem to be better modeled by the tapered Pareto or other alternatives, the test assesses the degree of local self-similarity at each value where the test is computed. The basic properties of the graphical test and its implementation are discussed, and applications of the test to seismological, wildfire, and financial data are considered.

Suggested Citation

  • Rakhee Dinubhai Patel & Frederic Paik Schoenberg, 2011. "A graphical test for local self-similarity in univariate data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2547-2562, January.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2547-2562
    DOI: 10.1080/02664763.2011.559211
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.559211
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.559211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    2. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    3. Pisarenko, V. & Sornette, D., 2006. "New statistic for financial return distributions: Power-law or exponential?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 387-400.
    4. Y. Malevergne & V. Pisarenko & D. Sornette, 2006. "On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(3), pages 271-289.
    5. G.-F. Gu & W.-X. Zhou, 2009. "On the probability distribution of stock returns in the Mike-Farmer model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(4), pages 585-592, February.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    8. Roger D. Peng & Frederic Paik Schoenberg & James A. Woods, 2005. "A Space-Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 26-35, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    2. Ekaterina Morozova & Vladimir Panov, 2021. "Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    3. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    4. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    5. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2012. "Scaling, stability and distribution of the high-frequency returns of the IBEX35 index," Papers 1208.0317, arXiv.org.
    7. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
    8. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    10. M. Derksen & B. Kleijn & R. de Vilder, 2020. "Heavy tailed distributions in closing auctions," Papers 2012.10145, arXiv.org.
    11. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    12. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    13. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    14. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    15. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    16. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    17. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    18. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    19. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    20. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2547-2562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.