IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v84y2014icp169-175.html
   My bibliography  Save this article

Objective Bayesian analysis of the Frechet stress–strength model

Author

Listed:
  • Abbas, Kamran
  • Tang, Yincai

Abstract

Several reference priors and a general form of matching priors are derived for a stress–strength system, and it is concluded that none of the reference priors is a matching prior. The study shows that the matching prior performs better than Jeffreys prior and reference priors in meeting the target coverage probabilities.

Suggested Citation

  • Abbas, Kamran & Tang, Yincai, 2014. "Objective Bayesian analysis of the Frechet stress–strength model," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 169-175.
  • Handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:169-175
    DOI: 10.1016/j.spl.2013.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521300312X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
    2. Kundu, Debasis & Raqab, Mohammad Z., 2009. "Estimation of R=P(Y," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1839-1846, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
    2. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    3. Min Wang & Xiaoqian Sun & Chanseok Park, 2016. "Bayesian analysis of Birnbaum–Saunders distribution via the generalized ratio-of-uniforms method," Computational Statistics, Springer, vol. 31(1), pages 207-225, March.
    4. Jeong Eun Lee & Ross McVinish & Kerrie Mengersen, 2011. "Population Monte Carlo Algorithm in High Dimensions," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 369-389, June.
    5. Xu, Ancha & Tang, Yincai, 2010. "Reference analysis for Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 185-192, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:169-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.