IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v200y2024i1d10.1007_s10957-023-02342-w.html
   My bibliography  Save this article

Approximate Methods for Solving Chance-Constrained Linear Programs in Probability Measure Space

Author

Listed:
  • Xun Shen

    (Osaka University)

  • Satoshi Ito

    (The Institute of Statistical Mathematics)

Abstract

A risk-aware decision-making problem can be formulated as a chance-constrained linear program in probability measure space. Chance-constrained linear program in probability measure space is intractable, and no numerical method exists to solve this problem. This paper presents numerical methods to solve chance-constrained linear programs in probability measure space for the first time. We propose two solvable optimization problems as approximate problems of the original problem. We prove the uniform convergence of each approximate problem. Moreover, numerical experiments have been implemented to validate the proposed methods.

Suggested Citation

  • Xun Shen & Satoshi Ito, 2024. "Approximate Methods for Solving Chance-Constrained Linear Programs in Probability Measure Space," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 150-177, January.
  • Handle: RePEc:spr:joptap:v:200:y:2024:i:1:d:10.1007_s10957-023-02342-w
    DOI: 10.1007/s10957-023-02342-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02342-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02342-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    2. Gryazina, Elena & Polyak, Boris, 2014. "Random sampling: Billiard Walk algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 497-504.
    3. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    4. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    2. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2022. "Randomized geometric tools for anomaly detection in stock markets," Papers 2205.03852, arXiv.org, revised May 2022.
    3. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    4. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
    5. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    6. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    7. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    8. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    9. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    10. Reuven Rubinstein, 2009. "The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 491-549, December.
    11. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    12. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    13. Cheng, Haiyan & Sandu, Adrian, 2009. "Efficient uncertainty quantification with the polynomial chaos method for stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3278-3295.
    14. Sorawit Saengkyongam & Anthony Hayter & Seksan Kiatsupaibul & Wei Liu, 2020. "Efficient computation of the stochastic behavior of partial sum processes," Computational Statistics, Springer, vol. 35(1), pages 343-358, March.
    15. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    16. Jan Heufer, 2014. "Generating Random Optimising Choices," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 295-305, October.
    17. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    18. Gryazina, Elena & Polyak, Boris, 2014. "Random sampling: Billiard Walk algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 497-504.
    19. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    20. Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:200:y:2024:i:1:d:10.1007_s10957-023-02342-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.